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Foreword

This is not a mathematical treatise but a guide. It is neither any hand-
book of the syntax of computer programming, but rather a starter, which
contains a number of exemplary program codes. You may call it a recipe
book.

The method discussed here, the Self-Organizing Map (SOM) introduced by
the author, is a data-analysis method. It produces low-dimensional projection
images of high-dimensional data distributions, in which the similarity relations
between the data items are preserved. In other words, it is able to cluster the
data, but at the same it orders the clusters. In a way, it forms reduced ab-
stractions of complex data. This method has been in practical use in science,
technology, finance and many other areas since 1982. Over 10 000 scientific pa-
pers and more than 20 books on it have been published. Plenty of mathematical
descriptions and justifications of its simpler versions have been presented, but for
a general dimensionality and distribution of the data items, no stringent proofs
of the convergence of the algorithm yet exist. Nonetheless, with a proper choice
of its parameters, the algorithm normally converges. In spite of being math-
ematically ”ill-posed,” the mappings produced by this algorithm have turned
out illustrative and useful in practice, and the correctness of the maps thereby
formed can be analyzed and verified.

Since 1989, many SOM software packages have been published by various par-
ties. Usually some diagnostic and other auxiliary programs have been included
with the basic SOM algorithms. Some of these packages are freeware, others
are commercial, and many researchers use specific SOM programs developed by
themselves for particular applications. One might think that the methodology
would already have been established and standardized, but in practice one has
encountered following kinds of problems:

1. Some widely-spread general-purpose algorithms, like those contained in
the SOM Toolbox developed in our laboratory, are only available as a set of
functions programmed in particular languages, e.g., MATLAB. Some people
may at first be confused about how to write proper and correct scripts that
use these functions to implement a specific SOM algorithm, and what should be
included in those scripts.

2. Frequently asked questions concern the selection of features for the input-
data items and proper dimensions for the SOM array: how many nodes should
be included in it, and what structure of the array should be used in a particular
application.

3. In order to achieve good results, one has to pay special attention to the
selection and preprocessing of the input data. It means that the training samples
ought to be carefully verified and validated in order that they represent the true
statistics of input, and do not contain ”outliers” that may be due to systematic
errors or faults. The data should also have metric properties for its self organi-
zation. On the other hand, it may not be harmful, at least in the preliminary
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studies, to involve redundant features to describe the data items, because after
the SOM has been constructed and analyzed, it is easy to ignore, for instance,
those features that depend on the other features, in order to save computing re-
sources. However, it may sometimes be advantageous to assign different weights
to the different features for better resolution in the map.

4. It may not have been realized generally that the basic SOM algorithm
implements a complex, nonlinear computational process. It is easy to overlook
the importance and meaning of its training parameters, because they affect, e.g.,
the speed of convergence and even the correctness of the final result. The values
selected for these parameters are usually not told in publications! Some SOM
maps that have been reported seem to represent only temporary states achieved
during the course of the learning process, and they may still change if the training
is continued.

5. However, it is not generally known that the batch computation, which can
be used to speed up the construction of the SOM, will converge in a finite number
of cycles, if carried out properly. This result can be used as a stopping rule of
the algorithm.

6. One has often not been aware of the existence of helpful tools by which
the quality of the resulting SOMs can be checked.

The SOM has mainly been used by experts of mathematical statistics and
programming. However, with a little of guidance, even non-specialists are ex-
pected to be able to use it correctly. So this not a textbook, which is trying to
define the syntax of the complete SOM Toolbox. The purpose of this discourse
is to give the first advice in the correct application of the SOM, using exemplary
scripts relating to different application areas.

Espoo, Finland, December 10, 2014
Teuvo Kohonen
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Preface

I am sure that all of you know what smoothing means in numerical mathematics.
For example, in a two-dimensional array of numbers, you first compute all of the
local averages around every node of the array (whereupon the corners and edges
of the array have to be taken into account in a separate way). In forming the
averages, the numbers are usually weighted by coefficients, the values of which
depend on the distance of the array node to be processed from the neighboring
nodes over which the average is taken. These coefficients are called the kernel.
After that, all of the old numbers in the array are replaced by the weighted
local averages. Smoothing can also be regarded as a convolution of the original
array with the smoothing kernel. These phases are reiterated a wanted number
of times.

Many of you are also familiar with the k-means clustering, also called the
vector quantization, in which k local averages are computed for a finite set of
variables in such a way that when each one of the original variables is approxi-
mated by the closest local average, the average quantization error thereby made
is minimum. In the k-means clustering the original variables, usually metric
vectors, are not ordered in any way, and do not belong to any array.

Around 1981 I was wondering what would happen if the k-means clustering
and the smoothing would be combined. Actually this happened in the context
when I was studying the theory of artificial neural networks and especially the
brain maps. In an attempt to simulate the learning processes that take place in
the brain I contrived an unsupervised learning scheme called the Self-Organizing
(topographic) Map that was supposed to describe how the brain maps might be
formed by adaptation to various sensory features.

As the scheme that combined k-means clustering with smoothing also worked
well in many practical data-analysis tasks, without any direct connection to brain
physiology, I started to advance it as a general analysis tool; many mathemati-
cians had already asked me why I need to refer to the neural networks! This
method, in a general form, has now been proliferated to many fields of science
as a data-analysis method, as you can read from this book.

One of my graduate students once said that to understand the Self-Organizing
Map one has to internalize half a dozen new principles simultaneously.

Maybe the threshold in trying to understand the SOM would be lower, if
one could first internalize a single basic idea which I got in the beginning of
1981, and which quickly materialized in the SOM algorithms. Consider a set of
input data vectors that we want to analyze. Also consider a two-dimensional
regular array of ”cells”, each of which contains an adaptive parameter vector, a
”model.” These ”models” together shall represent the set of input data vectors.
The ”models” shall have the same dimensionality as the input data vectors.

Especially in the analysis of clustered input data, the number of ”models”
is assumed to be much smaller than that of the input data vectors, whereupon
each cluster is represented by one or a few models. The objective is then to
determine the values of the ”models” as local averages of the input data vectors
in such a way that the distribution of the ”models” approximates the distribution
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of the input vectors. Moreover, the ”models” shall be ordered two-dimensionally
to reflect the similarities between the input data items. Using a relatively small
number of models it is possible to visualize the similarity relations of even a very
large data base.

On the other hand, there also exist problems in which we have only one
unique sample of each input item, and these items can then be projected onto
the self-organizing map nonlinearly; in this case, usually, the SOM array has
more nodes than input data.

In both types of problems, the ”models” constitute a similarity diagram of
the set of input items. It is necessary to realize that the SOM can handle these
two rather different types of problems using the saame algorithm!

In order to construct a set of such ”models” adaptively, one can start even
with random initial values for the ”model vectors”. (If the models are prelim-
inarily ordered, for instance along with their principal components, the self-
organizing process proceeds much quicker, as we will see.) In the simplest adap-
tive process in which such ”models” are formed, the input vectors are taken one
at a time and compared with all of the ”models” concurrently. A correction to a
particular subset of the ”models” is made in the following way, and this ”train-
ing” of the ”models” is continued iteratively, always picking up a new input
vector and making the corrections:

The basic idea in the formation of the SOM:

Every input data vector shall select the ”model” that matches best with
it, and this ”model”, called the winner, as well as a subset of ”models”
that are its spatial neighbors in the array, shall be modified for better
matching.

It is obvious that this is a kind of a smoothing process that tries to increase
the continuity of the ”models” in the two dimensions. At the same time the
”models” around the ”winner” tend to approximate the input data vectors. The
result is the Self-Organizing Map.

We intend to define this training principle mathematically, and then imple-
ment it by program codes. It will turn out that this principle works in a great
many different applications. What is different from case to case is a proper
preprocessing and representation of the input data, as well as the similarity
measures.
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A road map to the contents of this book

Progression of ideas

Here is a suggestion for a ”road map” to the reading of this book. You do
not have to read all of the sections at once before you can use the algorithm,
or understand how you could apply it to your own problems. Secs. 1 through 8
constitute the theoretical part, and the basic idea already transpires from Secs.
3,4, and 5.

Sec. 4 contains fundamental mathematical discussions, but if you don’t like
them, you might skip them first and continue with Sec. 7, which tries to describe
the most widely used ”Batch Map” algorithm in an illustrative fashion, without
mathematics.

When you are ready to start with concrete applications, you should proceed
to the description of software that starts at Sec.10. I recommend that before you
start working on a problem of your own, you should also run one of the given
examples first, e.g., the one described in Sec.12, to get some hands-on experi-
ence of the behavior of the algorithm. After that you may continue with another
example that looks most similar to you own problem, and start adapting its
program code to your own case.

Section 1 tries to explicate the philosophy of the SOM, because these aspects
may remain unnoticed if you encounter the description of the SOM algorithm
first time in some technical review. If you want to be a serious SOM worker,
you must be aware of what is actually taking place in the SOM, and to what
category of methods the SOM belongs.

Section 2 is trying to convince you about the practical importance of the sci-
entific, industrial, and financial importance of the SOM algorithm, and also to
tell something about the current progress in its use.

Section 3 has been written to answer the most frequently asked questions on
the SOM. For to obtain good results it is very important to ”internalize” these
details.

Section 4 is intended to provide the mathematical justification of the method.
I am using the term ”justification,” although the convergence proof of the SOM
algorithms has not yet been given for general dimensionality and distributions
of the input data. It must be understood that the SOM describes a nonlinear
decision process, and like many other nonlinear dynamic processes, it is very
hard to prove mathematically. The mathematics in this section defines the state
of the SOM process as a function of training steps, and specifies the asymptotic
(equilibrium) state after sufficiently long training. It is this particular result on
which the practical batch computation process of the SOM (”Batch Map”) is
based. Nonetheless, you need not be worried about managing the SOM method
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mathematically, if you use standard software and follow some basic advice that
I am attending to give you in this book. The SOM algorithm is unbelievably
robust in practice, and there exist diagnostic methods to assess the quality of
the maps produced by the algorithm.

Section 5 illustrates the self-organizing process by a very simple, two-dimensional
example, in which we can see a topographic order ensuing in the set of models.
This example gives rise to a practical application, to be discussed in Section 6.

Section 6, as mentioned above, demonstrates that the SOM algorithm can be
used to materialize an effective adaptive demodulator of signals used in telecom-
munications. This demodulator has a number of discrimination levels, which are
automatically adjusted to take into account various distortions in the transmit-
ted signals levels, for instance due to the attenuation and reflection of radio
waves through many paths.

Section 7 defines the batch computation algorithm of the SOM, and this part
is very central to the understanding of the SOM. It can be read almost without
mathematical background. What is most important to understand is that the
neighborhood function has a very central role in the operation of the SOM, and
its radius should never go to zero, because otherwise the algorithm would lose
its ordering power and would be reduced to the classic k-means algorithm. This
section also propagates the idea that if the set of input data vectors is fixed, and
the neighborhood function is held constant during the final training cycles, the
SOM algorithm will terminate in a finite and not too large number of training
cycles.

Section 8 lists various alternatives of similarity between the input data items,
and many of them occur in the examples given in this book. The purpose of this
section is to demonstrate the applicability of the SOM method to a wide range
of practical problems and applications.

Section 9 emphasizes that a variety of new self-organizing map principles have
been introduced and studied in recent years, and a number of competing software
packages have been published, commercial as well as freeware. It is not my
purpose to evaluate or compare these products. It is even impossible for me or
for anybody else to review the complete range of these products, because of a
large amount of material and sheer lack of time to read it. I hope that the reader
would be content if I give her or him working examples of my own method and
descriptions of applications that I have personally encoded and verified.

Neither does this book contain extensive examples from the industry or fi-
nance, because the explicit program codes, which are the essence of this dis-
course, would be too big in those applications to be copied and explained in full
in this kind of a tutorial presentation. I firmly believe that ”upscaling” of the
codes is no problem, once you understand how they work in smaller-scale appli-
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cations, and I also believe that the behavior of the SOM algorithm is principally
not very different in ”toy problems” and in big applications. The present-day
and future computers have unbelievable capacities for straightforward upscaling
of the computations.

Section 10 finally starts with the description of the SOM Toolbox and its cen-
tral functions, extensively applied in this book.

Section 11 solves the QAM demodulator problem using the Batch Map algo-
rithm and the SOM Toolbox.

Section 12 describes a practical case example, the mapping of input data
items onto the SOM according to their physical attributes. This example, as well
as the others selected to this book, can be seen to contain a result, which is
typical to data mining: we can see that a detailed result, which was completely
unexpected, will emerge. In this example we see that the ferromagnetic metals Ni,
Co and Fe are mapped into the same SOM cell although no magnetic properties
were included in the set if input attributes. So there must exist some hidden
properties in the other physical attributes that are common to this subset of
metallic elements and have a strong implicit correlation with them.

The program code given with this example may serve almost as such to a
number of other related applications; the only variable detail is a different input
data matrix in different applications.

Section 13 contains another physical example, the self-organization of colors,
but the representation of input data items is completely different from that of
the previous example. In Sec. 12 we had a finite set of input data items. In
this example the items are shades of color, which we can define in indefinite
quantities. On the other hand, the dimensionality of the color vectors is low,
three, and so we can display the models of color shades as such in the SOM.

A surprising feature that ensues in this experiment is that if we scale down
the input signals properly (e.g., as square roots of the RGB values), the SOM
of colors starts to resemble the chromaticity diagram of human vision! This rep-
resentation is also found in a particular visual area of the human brain, and so
we may have here a possible (but of course, rather coarse) neural model of color
vision.

Section 14 describes an SOM that is computationally similar to the one dis-
cussed in Section 12, but it has been applied to another important area of appli-
cations, namely, to finance. The six attributes taken from the Internet describe
the present financial state of 50 countries or unions.

The locations of the countries in this map look different from those of the
Welfare map shown in Fig. 1. The main reason for these cases looking different
is that in the Welfare map, attributes such as the levels of education and health
services were included, whereas the few financial indicators included there were
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not emphasized. The example represented in Sec. 14 is based solely on financial
indicators. Also the years from which these data sets were collected were quite
different: the Welfare map stems from 1992, while the financial data relate to
the year 2014.

Section 15 introduces a graphic method for the demarcation and emphasis of
cluster borders on the SOM array using shades of gray. It is called the U matrix.
These shades represent differences between neighboring model vectors : a dark
shade means that this difference is large, i.e., there exists a cluster border.

Section 16 does not contain anything new, except that it points out that the
attributes need not represent quantitative or measurable properties of items, but
the input information can be given in the form of nonnumerical, logic statements.

Section 17 is another example of the use of binary attributes. We only show
this example in order to exemplify the various ”dimensions” of the SOM, and
the representation of models by images of the best-matching items. This example
may also give a hint to new applications of the SOM.

Section 18 extends the use of discrete symbolic attributes in the SOM. It
is a generalization of the binary attributes, but the symbolic attributes may
here assume a multitude of discrete values. The most important new idea is
that one can represent multivalued discrete attributes, which are not related
quantitatively, by different unit vectors. This example is based on the familiar
mushroom classification data.

The distributions of input data on the SOM can be represented using shades
of gray. The falling of input items into a particular class is shown by a so-called
hit diagram. When the known data vectors are used as inputs to the SOM, the
number of ”winners” on each of the nodes is indicated by a shade of gray.

The surprising result transpiring in this example is that the attribute that
indicates the edibility of the mushrooms was not involved in the computation of
the SOM ; nonetheless, on the basis of the visible attributes, the models were
automatically separated into the clusters of poisonous vs. edible species, which
are shown by two separate histograms drawn onto identical SOM lattices. For
to check this, the hit diagrams of the edible vs. poisonous mushrooms were con-
structed by first dividing the input data according to the edibility attribute into
two separate sets, and then drawing separate hit diagrams for them. We can see
that the histograms of these two classes are segregated to a reasonable accuracy:
their intersection is almost empty.

Section 19 exemplifies the use of the SOM in statistical classification. The input
data that represent mutually related scientific articles fall in several categories or
classes, in this example four. The SOM is first computed using all available input
data, not yet regarding the class information. Nonetheless the SOM models were
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almost completely segregated into four classes, the histograms of which had an
almost empty intersection.

In this example we also introduce new kinds of features used in the classifi-
cation of textual documents. Each document is identified by the word statistics
of its contents. First a histogram of words used in the document is recorded.
Then the words in the histograms, or the elements of the histogram regarded
as vectorial elements are weighted by statistical arguments. Finally, rare and
very common words are dropped, and the weighted histograms of words, be-
lieved to provide the largest class separation, are used as ”input features” of the
documents.

In Sections 21 and 22 we shall show how the different areas of a single SOM
can be labeled by different pseudo-colors to demarcate zones that are supposed
to represent the various classes most credibly.

Section 20 is an ”interlude.” Before proceeding with bigger examples, it was felt
necessary to establish rules for the selection of certain parameter values, such as
the number of coarse and fine training cycles vs. array size. This benchmarking
was made using the Reuters document data, which seemed well verified and well
validated.

Section 21 shows that it is possible to divide the area of the same SOM into
zones according to the classes of input data items mapped onto the SOM. The
principle described here first is based on the Bayesian classification rule: a cell
in the SOM is labeled according to the majority of classes of items that have
selected this node as a winner. In the classification of a new, unknown input
sample, its classification is decided to comply with the label of the correspond-
ing winner model.

Section 22 presents another labeling criterion. A cell is labeled by k-nearest-
neighbors classification, i.e., according to the majority of labels in the k input
data items that are most similar to the model in the cell. One may see that the
k-nearest-neighbors labeling is smoother, whereas the Bayesian decision provides
a more accurate labeling.

Section 23 introduces an idea, which is new in the SOM research. Instead of
classifying an unknown input item according to the winner model, a more infor-
mative visualization of the input data item is to define a small set of models that
together fit to the input best. This is done by a least-squares fitting procedure in
which non-negative fitting coefficients are used. When using the non-negativity
constraint, the number of nonzero terms in this optimized linear mixture is usu-
ally very small, on the order of one per cent of all models. The example discussed
in this section demonstrates the method using the Reuters document data.

Section 24 applies the same idea to the visual analysis of mobile phone data.
It seems that this principle might work well in the monitoring the performance
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of any complex system, machine, or machinery.

Section 25 moves to a completely new subject, namely, contextual SOMs. In
other words, the semantic similarities between words used in various text cor-
pora are usually reflected in the similarities of the local contexts of neighboring
words, in which they occur. Thereby we only mean contexts extending to a dis-
tance of a few word positions. The example discussed in this section is still a
”toy problem,” in which the source text is generated artificially, on the basis
of an extremely small vocabulary. This example has mainly been included here
for historical reasons,because it was the first of this type, but it already shows
how complex the preprocessing may be that is needed in the ”contextual SOMs.”

Section 26 then describes a rather large experiment which I carried out in 2009-
2010. This work was prepared for WSOM 2011 (Workshop on Self-Organizing
Maps), but in this book I have made big changes to the original program codes,
to make its explanation more illustrative.

The text corpus was very big, on the order of 1,500,000 words, all of which
were assigned to one of 89 linguistic classes by my Chinese colleagues. Inciden-
tally, this text was written in Chinese that I do not master, but since the words
were provided with linguistic meanings, the SOM could nonetheless analyze the
words automatically. The Chinese text was selected for two reasons: 1. It was the
only classified corpus that was available to me. 2. Since the words in Chinese are
not inflected and have no endings, the semantics ensue from the local contexts
in totally pure form.

It may be possible to try this same example for other languages, too.

A result of this analysis shows that: 1. The words are clustered in the SOM
on basis of their local contexts, not only by their word classes but also according
to their roles as sentence constituents, which sounds reasonable. 2. In the orig-
inal article [45] we could further show that the frequency of a word in the text
corpus has a strong effect on its classification; this result is not presented in this
book.

Section 27 tries to replicate the ”Welfare map” experiment shown in Fig. 1.
Unfortunately the SOM Toolbox functions do not have the provision for using
incomplete input data (with random elements missing from the input vectors).
In this experiment I tried to patch the incomplete data by estimation of the val-
ues of the missing elements on the basis of neighboring models in the SOM where
these elements were given. This method is nicknamed ”inputting.” It turned out
that almost reasonable results were obtained, although the SOM did not quite
comply with Fig.1, computed by our earlier SOM PAK software package.

Section 28 takes us to a still different, major problem area, namely SOMs of
symbol strings. When I introduced the Batch Map algorithm, it occurred to me
that this nonmathematical formulation of the algorithm might also apply to non-
vectorial variables, e.g., strings of symbols, if some kind of ”mean” over a set of
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symbol strings could be defined. In 1985 I had published the idea of a ”generalized
median” of string variables, which seemed to fit well to this algorithm. Since then
a genre of ”string SOMs” has been studied and used especially in bioinformatics.

The worst problem in constructing string-SOMs is that the strings are discrete-
valued entities. This problem may be possible to tolerate if the strings are long,
like in bioinformatics. In this book I have selected an example in which the do-
main of values of the elements of strings is very small, namely, (1, 2, ... , 26)
(the letters), and the strings are very short (names). The initialization of the
models is another problem. Accordingly, there occur frequently various ties in
the comparison of strings. I had to invent all shorts of unusual tricks to make
this example computable.

Section 29 describes a special algorithm. Already in 1984 we were trying to
apply the SOM to automatic speech recognition, or more accurately, to the recog-
nition of phonemes from continuous speech, in order to transcribe speech. This
method seemed to work promisingly for Finnish and Japanese, which are very
phonemic languages. In order to increase class separation, we were supervising
the construction of the SOM by including the labels of the phonemes (as unit
vectors) in the input patterns: in this way, the class information enhanced the
clustering of the acoustic vectors into phonemic groups. The simple artificial-data
example is trying to illustrate this effect. Our ”Phonetic Typewriter,” which was
based on this idea, was published in the IEEE Spectrum in 1988 [36].

Section 30, ”The Learning Vector Quantization,” describes a class of learning
algorithms that produce near-optimal class separation in the sense of Bayesian
statistics. I invented this idea in trying to improve the accuracy of our recognizer
of phonemes, or the ”Phonetic Typewriter,” and it indeed increased the recog-
nition accuracy, when compared with the supervised SOM discussed in Sec. 30.
If you are mainly interested in the SOM and not so much in statistical pattern
recognition, you may skip this section.

Section 31 demonstrates that an SOM can act as a filter bank for the pre-
processing and extraction of features for waveform analysis, e.g., in the analysis,
synthesis, and perception of speech.

In the book in presentation we compute for segments of waveforms so-called
linear predictor coding (LPC) coefficients, which are a viable alternative to fre-
quency analysis by the Fast Fourier Transform, or to the so-called cepstra which
are applied widely as features in speech recognition [39]. The SOM array is cal-
ibrated by known samples of the waveform, e.g., by known phonemes extracted
from continuous speech. An unknown signal, e.g., speech is first segmented into
parts, for each of which the LPC coefficients are computed. The best-matching
LPC coefficients of the SOM are then identified, and the label of the correspond-
ing node indicates the recognition result, e.g., the phoneme or pseudo-phoneme
represented by that segment.
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In order to improve class separation, the models of the SOM can further
be fine tuned, either by the Supervised SOM, or preferably by Learning Vector
Quantization.

Section 32 gives practical hints of how to improve the speed of computation by
shortcut computing methods and eventual parallel processing. All of these ideas
cannot be used in the SOM Toolbox functions, but they may stimulate future
research.
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1 The Self-Organizing Map; an overview

The Self-Organizing Map represents a set of high-dimensional data items
as a quantized two-dimensional image in an orderly fashion. Every data
item is mapped into one point (node) in the map, and the distances of
the items in the map reflect similarities between the items.

The Self-Organizing Map (SOM) is a data-analysis method that visualizes
similarity relations in a set of data items. For instance in economy, it has been
applied to the comparison of enterprises at different levels of abstraction, to
assess their relative financial conditions, and to profile their products and cus-
tomers. On the other hand, in industry, the monitoring of processes, systems
and machineries by the SOM method has been a very important application,
and there the purpose is to describe the masses of different input states by or-
dered clusters of typical states. In science and technology at large, there exist
unlimited tasks where the research objects must be classified on the basis of their
inherent properties, to mention the classification of proteins, genetic sequences
and galaxies. A comprehensive listing of the most important applications can be
found in Sec.2.

It is assumed that you have already got some information about the SOM
(e.g., [39], [46]) and you are now interested in writing program codes for its
application. The purpose of this guide is to help you to start with it.

1.1 Is the SOM a projection or a clustering method?

The SOM as a nonlinear projection. When I gave my first conference talk
on the SOM at a Pattern Recognition conference in 1982, a remark from the au-
dience pointed out that the SOM belongs to the nonlinear projection methods,
such as multidimensional scaling (MDS), especially the Sammon projection [76].
That is true, but only partially. In the projective methods the data vectors, often
with a very high dimensionality, are mapped onto a two-dimensional Euclidean
plane in such a way that the mutual distances of the projections on the 2D Eu-
clidean plane are approximately the same as the mutual distances of the original
vectors in the high-dimensional input-data space. Similar items are located close
to each other, and dissimilar items farther apart in the display, respectively. It
is said that the items are then represented in an abstract topographic order.

However, the SOM represents input data by models, which are
local averages of the data. Only in some special cases the relation of input
items with their projection images is one-to-one in the SOM. More often, es-
pecially in industrial and scientific applications, the mapping is many-to-one:
i.e., the projection images on the SOM are local averages of the input-data dis-
tribution, comparable to the k-means averages in classical vector quantization
(VQ)([19], [20]). In the VQ, the local averages are represented by a finite set of
codebook vectors. The SOM also uses a finite set of ”codebook vectors,” called
the models, for the representation of local averages. An input vector is mapped
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into a particular node on the SOM array by comparing it with all of the models,
and the best-matching model, called the winner, is identified, like in VQ. The
most essential difference with respect to the k-means clustering, however, is that
the models of the SOM also reflect topographic relations between the projection
images which are similar to those of the source data. So the SOM is actually a
data compression method, which represents the topographic relations of the data
space by a finite set of models on a topographic map, in an orderly fashion.

In the standard-of-living diagram shown in Fig. 1, unique input items are
mapped on unique locations on the SOM. However, in the majority of appli-
cations, there are usually many statistically distributed variations of the input
items, and the projection image that is formed on the SOM then represents clus-
ters of the variations. We shall make this fact more clear in examples. So, in its
genuine form the SOM differs from all of the other nonlinearly projecting meth-
ods, because it usually represents a big data set by a much smaller number of
models, sometimes also called ”weight vectors” (this latter term comes from the
theory of artificial neural networks), arranged as a rectangular array of nodes.
Each model has the same number of parameters as the number of features in the
input items. However, an SOM model may not be a replica of any input item
but only a local average over a subset of items that are most similar to it. In this
sense the SOM works like the k-means clustering algorithm, but in addition, in
a special learning process, the SOM also arranges the k means into a topographic
order according to their similarity relations. The parameters of the models are
variable and they are adjusted by learning such that, in relation to the original
items, the similarity relations of the models finally approximate or represent the
similarity relations of the original items. It is obvious that an insightful view of
the complete data base can then be obtained at one glance.

The SOM classifies feature vectors. Assume now generally that we have
a large set of some input-data items and each of them is represented by several
features. The features may consist of numerical attributes, such as statistical
descriptors of an item, but many other types of features can also be used. The
simplest measure of the similarity of two items is then the similarity of their
feature sets in some metric, but again, more complex definitions of similarity
can be delineated.

The SOM display is quantized. The SOM does not map high-dimensional
items onto a Euclidean plane but onto a regular array or network of nodes. In
the first illustrative example, shown in Fig. 1, we demonstrate how the SOM
compares the standard of living in different countries of the world, labeled by
three-letter symbols (which may be understandable without any separate leg-
end). From the statistics of the World Development Record of the World Bank
of the year 1992, 39 statistical indicators, which describe factors like health, ed-
ucation, consumption and social services, were picked up, forming a 39-element
feature vector for each country. All indicators are relative to population. As will
be explained shortly, an abstract map, a nonlinear projection of the countries
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Fig. 1. Structured diagram of the data set chosen to describe the standard of living in
126 countries of the world in the year 1992. The abbreviated country symbols are con-
centrated onto locations in the (quantized) display computed by the SOM algorithm.
The symbols written in capital letters correspond to those 78 countries for which at
least 28 indicators out of 39 were given, and they were used in the real computation
of the SOM. The symbols written in low case letters correspond to countries for which
more than 11 indicator values were missing, and these countries are projected to loca-
tions based on the incomplete comparison of their given attributes with those of the
78 countries.(Cf. The legend on symbols on page 4.)

onto a rectangular array was computed by the SOM algorithm. This implemen-
tation of the SOM has been computed by our older SOM PAK software package,
which has provisions for dealing with missing data.

The overall order of the countries on the map can be seen to illustrate the
traditional conception of welfare. In fact, the horizontal dimension of the map
seems to correlate fairly closely with the gross national product per capita of
the countries. Refined interpretations about the fine structures of welfare and
poverty types in different areas of the map can be made based on some tra-
ditional methods like factor analysis applied on selected subsets of countries.
Nonetheless, this two-dimensional display is more easily understandable than
the ordinary linear tables that are based on econometric functions. One might
say that countries that are mapped close to each other in the SOM have a similar
state of development, expenditure pattern, and policy.

The SOM models are developed, not moved. It shall be emphasized
that unlike in the other projective methods, in the SOM the representations of
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Table 1. Legend of symbols used in Fig. 1:

AFG Afghanistan GRC Greece NOR Norway
AGO Angola GTM Guatemala NPL Nepal
ALB Albania HKG Hong Kong NZL New Zealand
ARE United Arab Emirates HND Honduras OAN Taiwan, China
ARG Argentina HTI Haiti OMN Oman
AUS Australia HUN Hungary PAK Pakistan
AUT Austria HVO Burkina Faso PAN Panama
BDI Burundi IDN Indonesia PER Peru
BEL Belgium IND India PHL Philippines
BEN Benin IRL Ireland PNG Papua New Guinea
BGD Bangladesh IRN Iran, Islamic Rep. POL Poland
BGR Bulgaria IRQ Iraq PRT Portugal
BOL Bolivia ISR Israel PRY Paraguay
BRA Brazil ITA Italy ROM Romania
BTN Bhutan JAM Jamaica RWA Rwanda
BUR Myanmar JOR Jordan SAU Saudi Arabia
BWA Botswana JPN Japan SDN Sudan
CAF Central African Rep. KEN Kenya SEN Senegal
CAN Canada KHM Cambodia SGP Singapore
CHE Switzerland KOR Korea, Rep. SLE Sierra Leone
CHL Chile KWT Kuwait SLV El Salvador
CHN China LAO Lao PDR SOM Somalia
CIV Cote d’Ivoire LBN Lebanon SWE Sweden
CMR Cameroon LBR Liberia SYR Syrian Arab Rep.
COG Congo LBY Libya TCD Chad
COL Colombia LKA Sri Lanka TGO Togo
CRI Costa Rica LSO Lesotho THA Thailand
CSK Czechoslovakia MAR Morocco TTO Trinidad and Tobago
DEU Germany MDG Madagascar TUN Tunisia
DNK Denmark MEX Mexico TUR Turkey
DOM Dominican Rep. MLI Mali TZA Tanzania
DZA Algeria MNG Mongolia UGA Uganda
ECU Ecuador MOZ Mozambique URY Uruguay
EGY Egypt, Arab Rep. MRT Mauritania USA United States
ESP Spain MUS Mauritius VEN Venezuela
ETH Ethiopia MWI Malawi VNM Viet Nam
FIN Finland MYS Malaysia YEM Yemen, Rep.
FRA France NAM Namibia YUG Yugoslavia
GAB Gabon NER Niger ZAF South Africa
GBR United Kingdom NGA Nigeria ZAR Zaire
GHA Ghana NIC Nigaragua ZMB Zambia
GIN Guinea NLD Netherlands ZWE Zimbabwe

the items are not moved anywhere in their ”topographic” map for their order-
ing. Instead, the adjustable parameters of the models are associated with fixed
locations of the map once and for all, namely, with the nodes of a regular, usu-
ally two-dimensional array (Fig. 2). A hexagonal array, like the pixels on a TV
screen, provides the best visualization. Initially the parameters of the models
can even have random values. The correct final values of the models or ”weight
vectors” will develop gradually by learning. The representations, i.e., the models,
become more or less exact replica of the input items when their sets of feature
parameters are tuned towards the input items during learning. The SOM al-
gorithm constructs the models (in this picture denoted generally by Mi) such
that:

After learning, more similar models will be associated with nodes that are
closer in the array, whereas less similar models will be situated gradually
farther away in the array.
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Fig. 2. Illustration of a Self-Organizing Map. An input data item X is broadcast to
a set of models Mi, of which Mc matches best with X. All models that lie in the
neighborhood (larger circle) of Mc in the array will be updated together in a training
step and finally match better with X than with the rest.

It may be easier to understand the rather involved learning principles and
mathematics of the SOM, if the central idea is first expressed in the following
simple illustrative form. Let X denote a general input item, which is broadcast
to all nodes for its concurrent comparison with all of the models.

Every input data item shall select the model that matches best with the
input item, and this model, called the winner (denoted by Mc in Fig. 2),
as well as a subset of its spatial neighbors in the array, shall be modified
for better matching.

Like in the k-means clustering, the modification is concentrated on a selected
node that contains the winner model. On the other hand, since a whole spatial
neighborhood around the winner in the array is modified at a time, the degree of
local, differential ordering of the models in this neighborhood, due to a smooth-
ing action, will be increased. The successive, different inputs cause corrections
in different subsets of models. The local ordering actions will gradually be prop-
agated over the array. However, the real mathematical processes are a bit more
complicated than that, and will be discussed in the following sections.

1.2 Is the SOM a model, a method, or a paradigm?

The SOM as a neural model. Many principles in computer science have
started as models of neural networks. The first computers were nicknamed ”gi-
ant brains,” and the electronic logic circuits used in the first computers, as
contrasted with the earlier electromechanical relay-logic (switching) networks,
were essentially nothing but networks of threshold triggers, believed to imitate
the alleged operation of the neural cells.
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The first useful neural-network models were adaptive threshold-logic circuits,
in which the signals were weighted by adaptive (”learning”) coefficients. A sig-
nificant new aspect introduced in the 1960s was to consider collective effects in
distributed adaptive networks, which materialized in new distributed associative-
memory models, multilayer signal-transforming and pattern-classifying circuits,
and networks with massive feedbacks and stable eigenstates, which solved certain
optimization problems.

Against this background, the Self-Organizing Map (SOM) introduced around
1981-82 may be seen as a model of certain cognitive functions, namely, a network
model that is able to create organized representations of sensory experiences, like
the brain maps in the cerebral cortex and other parts of the central nervous sys-
tem do. In the first place the SOM gave some hints of how the brain maps could
be formed postnatally, without any genetic control. The first demonstrations of
the SOM exemplified the adaptive formation of sensory maps in the brain, and
stipulated what functional properties are most essential to their formation.

The SOM as a data-mining method. In the early 1970s there were big
steps made in pattern recognition (PR) techniques. They continued the idea of
adaptive networks that started the ”artificial intelligence (AI)” research. How-
ever, after the introduction of large time-shared computer systems, a lot of com-
puter scientists took a new course in the AI research, developing complex decision
rules by ”heuristic programming”, by which it became possible to implement,
e.g., expert systems, computerized control of large projects, etc. However, these
rules were mainly designed manually. Nonetheless there was a group of computer
scientists who were not happy with this approach: they wanted to continue the
original ideas, and to develop computational methods for new analytical tasks
in information science, such as remote sensing, image analysis in medicine, and
speech recognition. This kind of Pattern Recognition was based on mathemat-
ical statistics, and with the advent of new powerful computers, it too could be
applied to large and important problems.

Notwithstanding the connection between AI and PR research broke in the
1970ies, and the AI and PR conferences and societies started to operate sepa-
rately.

Although the Self-Organizing Map research was started in the neural-networks
context, its applications were actually developed in experimental pattern-recognition
research , which was using real data. It was first found promising in speech
recognition, but very soon numerous other applications were found in industry,
finance, and science. The SOM is nowadays regarded as a general data-analysis
method in a number of fields.

Data mining has a special flavor in data analysis. When a new research topic
is started, one usually has little understanding of the collected data. With time it
happens that new, unexpected results or phenomena will be found. The meaning
often given to automated data mining is that the method is able to discover new,
unexpected and surprising results. Even in this book I have tried to collect simple
experiments, in which something quite unexpected will show up. Consider, for
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instance, Sec. 12 (”The SOM of some metallic elements”) in which we find that
the ferromagnetic metals are mapped to a tight cluster; this result was not
expected, but the data analysis suggested that the nonmagnetic properties of
the metals must have a very strong correlation with the magnetic ones! Or in
Sec. 19 (”Two-class separation of mushrooms on the basis of visible attributes”)
we are clustering the mushrooms on the basis of their visible attributes only,
but this clustering results in a dichotomy of edible vs. poisonous species. In
Sec. 13 we are organizing color vectors by the SOM, and if we use a special
scaling of the color components, we obtain a color map that coincides with the
chromaticity map of human color vision, although this result was in no way
expected. Accordingly, it may be safe to say that the SOM is a genuine data
mining method, and it will find its most interesting applications in new areas of
science and technology.

I may still mention a couple of other works from real life. In 1997, Naim et
al. published a work [61] that clustered middle-distance galaxies according to
their morphology, and found a classification that they characterized as a new
finding, compared with the old standard classification performed by Hubble. In
Finland, the pulp mill industries were believed to represent the state of the art,
but a group of our laboratory was conducting very careful studies of the pro-
cess by the SOM method [1], and the process experts payed attention to certain
instabilities in the flow of pulp through a continuous digester. This instability
was not known before, and there was sufficient reason to change the internal
structures of the digester so that the instability disappeared.

The SOM principle as a new paradigm in information science. It
seems possible that the SOM will open new vistas into the information science.
Not only does it already have numerous spin-offs in applications, but its role
in the theory of cognition is intriguing. However, its mathematics is still in its
infancy and offers new problems especially for mathematical statistics. A lot of
high-level research is going on in this area. Maybe it is not exaggerated to assert
that the SOM presents a new information processing paradigm, or at least a
philosophical line in bioinformatics.

To recapitulate, the SOM is a clustering method, but unlike the usual
clustering methods, it is also a topography-preserving nonlinear projec-
tion mapping. On the other hand, while the other nonlinear projection
mappings are also topography-preserving mappings, they do not average
data, like the SOM does.
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2 Main application areas of the SOM

More than 10 000 scientific papers on the SOM have been published.
Recently, the number of new publications has been on the order of 800
yearly.

Before looking into the details, one may be interested in knowing the justifica-
tion of the SOM method. Briefly, by the end of the year 2005 we had documented
7768 scientific publications (cf. [32], [64] and [69]) that analyze, develop, or apply
the SOM. The following short list gives the main application areas:

1. Statistical methods at large
(a) exploratory data analysis
(b) statistical analysis and organization of texts

2. Industrial analyses, control, and telecommunications: [40]
3. Biomedical analyses and applications at large
4. Financial applications: [13]

In addition to these, one may mention a few specific applications, e.g., profil-
ing of the behavior of criminals, categorization of galaxies ([61]), categorization
of real estates, etc.

A very important application area of the SOM has been the exploration of
full-text databases, i.e., document organization and retrieval. These publications
can only be cited here, because showing the scripts for the management of such
big text corpora is not possible in this tutorial book. One should take a look
at the original articles, e.g., [54], [24], [25], [26], [27], [28], and [59]. A smaller
application has been expounded in Sec. 17 in full.

It is neither possible to give a full account of the theory and different versions
of the SOM, or applications of the SOM in this article. We can only refer to
the above lists of publications (today, their number is over 10,000, and about
800 new papers are being published yearly), and to more than ten textbooks,
monographs, or edited books, e.g. [37], [73], [60], [63], [84], [88], [39], [2], [62],
[78], [85], and a great number of PhD Theses.

Two special issues of the journal Neural Networks have been dedicated to
the SOM: The 2002 Special Issue with the subtitle ”New Developments in Self-
Organizing Maps,” Neural Networks, Vol. 1, Numbers 8-9, October/November
2002, and the 2006 Special Issue ”Advances in Self-Organizing Maps - WSOM’05,”
Neural Networks, Vol.1, Numbers 6-7, July/August 2006. Moreover, the journal
Neurocomputing has published a special SOM issue in Vol.21, Numbers 1-3, Oc-
tober 1998.

Quite recently, this author has published an updated review article on the
SOM [46].

A series of meetings named the WSOM (Workshop on Self-Organizing Maps)
has been in progress since 1997. They have been organized in the following
venues: Otaniemi, Finland (1997 and 1999) [94], [63]; Lincoln, U.K. (2001) [2],
Kitakyushu, Japan (2003) [95]; Paris, France (2005) [96]; Bielefeld, Germany
(2007) [97]; St Augustine, FL, USA (2009) [70], Espoo, Finland (2011) [49],
Santiago, Chile (2012) [16], and Mittweida, Germany (2014) [92].
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3 How to select the SOM array

Usually the SOM display is formed onto a two-dimensional rectangular
array, where the nodes are organized as a hexagonal grid.

3.1 Size of the array

One of the most frequently asked questions concerning the structure of the SOM
is how many nodes one needs in the array. If the SOM is used to map unique
items such as the countries in Fig. 1, one may have even more nodes as there
are items, because some items are clustered on the same node, while there will
be empty space between the occupied nodes. However, there may exist better
visualization methods for them, like the so-called nonlinear projections (cf. [76]).

Maybe it is necessary to state first that the SOM is visualizing the the entire
input-data space, whereupon its density function ought to become clearly visible.

The SOM is a quantizing method. Assume next that we have enough
statistical data items to visualize the clustering structures of the data space
with sufficient accuracy. Then it should be realized that the SOM is a quan-
tizing method, and has a limited spatial resolution to show the details of the
clusters. Sometimes the data set may contain only few clusters, whereupon a
coarse resolution is sufficient. However, if one suspects that there are interesting
fine structures in the data, then a larger array would be needed for sufficient
resolution.

Histograms can be displayed on the SOM array. However, it is also
necessary to realize that the SOM can be used to represent a histogram. The
number of input data items that is mapped onto a node is displayed as a shade
of gray, or by a pseudo-color. The statistical accuracy of such a histogram de-
pends on how many input items are mapped per node on the average . A very
coarse rule-of-thumb may be that about 50 input-data items per node on the av-
erage should be sufficient, otherwise the resolution is limited by the sparsity of
data. So, in visualizing clusters, a compromise must be made between resolution
and statistical accuracy. These aspects should be taken into account especially
in statistical studies, where only a limited number of samples are available.

Sizing the SOM by a trial-and-error method. It is not possible to esti-
mate or even guess the exact size of the array beforehand. It must be determined
by the trial-and-error method, after seeing the quality of the first guess. One may
have to test several sizes of the SOM to check that the cluster structures are
shown with a sufficient resolution and statistical accuracy. Typical SOM arrays
range from a few dozen to a few hundred nodes.

In special problems, such as the mapping of documents onto the SOM array,
even larger maps with, say, thousands of nodes, are used. The largest map pro-
duced by us has been the SOM of seven million patent abstracts, for which we
constructed a one-million-node SOM.
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On the other hand, the SOM may be at its best in the visualization of
industrial processes, where unlimited amounts of measurements can be recorded.
Then the size of the SOM array is not limited by the statistical accuracy but
by the computational resources, especially if the SOM has to be constructed
periodically in real time, like in the control rooms of factories.

3.2 Shape of the array

Because the SOM is trying to represent the distribution of high-dimensional
data items by a two-dimensional projection image, it may be understandable
that the scales of the horizontal and vertical directions of the SOM array should
approximately comply with the extensions of the input-data distribution in the
two principal dimensions, namely, those two orthogonal directions in which the
variances of the data are largest. In complete SOM software packages there is
usually an auxiliary function that makes a traditional two-dimensional image
of a high-dimensional distribution, e.g., the Sammon projection (cf., e.g. [39] in
our SOM Toolbox program package. From its main extensions one can estimate
visually what the approximate ratio of the horizontal and vertical sides of the
SOM array should be.

Special shapes of the array. There exist SOMs in which the array has not
been selected as a rectangular sheet. Its topology may resemble, e.g., a cylinder,
torus, or a sphere (cf., e.g., [80]). There also exist special SOMs in which the
structure and number of nodes of the array is determined dynamically, depending
on the received data; cf., e.g., [18].

The special topologies, although requiring more cumbersome displays, may
sometimes be justified, e.g., for the following reasons. 1. The SOM is sometimes
used to define the control conditions in industrial processes or machineries au-
tomatically, directly controlling the actuators. A problem may occur with the
boundaries of the SOM sheet: there are distortions and discontinuities, which
affect the control stability. The toroidal topology seems to solve this problem,
because there are then no boundaries in the SOM. A similar effect is obtained
by the spherical topology of the SOM. (Cf. Subsections.4.5 and 5.3, however.)
2. There may exist data, which are cyclic by their nature. One may think, for
example of the application of the SOM in musicology, where the degrees of the
scales repeat by octaves. Either the cylindrical or toroidal topology will then
map the tones cyclically onto the SOM.

The dynamical topology, which adjusts itself to structured data, is very in-
teresting in itself. There is one particular problem, however: one must be able
to define the condition on which a new structure (branching or cutting of the
SOM network) is due. There do not exist universal conditions of this type, and
any numerical limit can only be defined arbitrarily. Accordingly, the generated
structure is then not unique. This same problem is encountered in other neural-
network models.

In this guide we do not discuss special shapes of SOMs.
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4 The original, stepwise recursive SOM algorithm

4.1 The algorithm

The first SOMs were constructed by a stepwise-recursive learning algo-
rithm, where, at each step, a selected patch of models in the SOM array
was tuned towards the given input item, one at a time.

Consider again Fig. 2. Let the input data items X this time represent a
sequence {x(t)} of real n-dimensional Euclidean vectors x, where t, an integer,
signifies a step in the sequence. Let theMi, being variable, successively attain the
values of another sequence {mi(t)} of n-dimensional real vectors that represent
the successively computed approximations of model mi. Here i is the spatial
index of the node with which mi is associated. The original SOM algorithm
assumes that the following process converges and produces the wanted ordered
values for the models:

mi(t+ 1) = mi(t) + hci(t)[x(t)−mi(t)] , (1)

where hci(t) is called the neighborhood function. The neighborhood function
has the most central role in self organization. This function resembles the kernel
that is applied in usual smoothing processes. However, in the SOM, the subscript
c is the index of a particular node (winner) in the array, namely, the one with
the model mc(t) that has the smallest Euclidean distance from x(t):

c = argmini{||x(t)−mi(t)||} . (2)

Equations (1) and (2) can be illustrated as defining a recursive step where
first the input data item x(t) defines or selects the best-matching model (winner)
according to Eq.(2). Then, according to Eq.(1), the model at this node as well
as at its spatial neighbors in the array are modified. The modifications always
take place in such a direction that the modified models will match better with
the input.

The rates of the modifications at different nodes depend on the mathematical
form of the function hci(t). A much-applied choice for the neighborhood function
hci(t) is

hci(t) = α(t) exp[−sqdist(c, i)/2σ2(t)] , (3)

where α(t) < 1 is a monotonically (e.g., hyperbolically, exponentially, or
piecewise linearly) decreasing scalar function of t, sqdist(c, i) is the square of the
geometric distance between the nodes c and i in the array, and σ(t) is another
monotonically decreasing function of t, respectively. The true mathematical form
of σ(t) is not crucial, as long as its value is fairly large in the beginning of the
process, say, on the order of 20 per cent of the longer side of the SOM array,
after which it is gradually reduced to a small fraction of it, usually in a few
thousand steps. The topographic order is developed during this period. On the
other hand, after this initial phase of coarse ordering, the final convergence to
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nearly optimal values of the models takes place, say, in an order of magnitude
more steps, whereupon α(t) attains values on the order of .01. For a sufficient
statistical accuracy, every model must be updated sufficiently often. However, we
must give a warning: the final value of σ shall never go to zero, because otherwise
the process loses its ordering power. It should always remain, say, above half of
the array spacing. In very large SOM arrays, the final value of σ may be on the
order of five per cent of the shorter side of the array.

There are also other possible choices for the mathematical form of hci(t).
One of them, the ”bubble” form, is very simple; in it we have hci = 1 up to a
certain radius from the winner, and zero otherwise.

4.2 Stable state of the learning process

In the stationary state of learning, every model is the average of input
items projected into its neighborhood, weighted by the neighborhood func-
tion.

Assuming that the convergence to some stable state of the SOM is true, we
require that the expectation values of mi(t + 1) and mi(t) for t → ∞ must be
equal, while hci is nonzero, where c = c(x(t)) is the index of the winner node for
input x(t). In other words we must have

∀i, Et{hci(x(t)−mi(t))} = 0 . (4)

Here Et is the mathematical expectation value operator over t. In the as-
sumed asymptotic state, for t → ∞, the mi(t) are independent of t and are
denoted by m∗

i . If the expectation values Et(.) are written, for t → ∞, as
(1/t)

∑
t(.), we can write

m∗
i =

∑
t hci(t)x(t)∑

t hci(t)
. (5)

This, however, is still an implicit expression, since c depends on x(t) and
the mi, and must be solved iteratively. Nonetheless, Eq.(5) shall be used for the
motivation of the iterative solution for the mi, known as the batch computation
of the SOM (”Batch Map”).

4.3 Initialization of the models

The learning process can be started with random vectors as the initial
values of the model vectors, but learning is sped up significantly, if certain
regular initial values are given to the models.

A special question concerns the selection of the initial values for themi. It has
been demonstrated by [39] that they can be selected even as random vectors, but
a significantly faster convergence follows if the initial values constitute a regular,
two-dimensional sequence of vectors taken along a hyperplane spanned by the two
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largest principal components of x (i.e., the principal components associated with
the two highest eigenvalues); cf. [39]. This method is called linear initialization.

The initialization of the models as random vectors was originally used only
to demonstrate the capability of the SOM to become ordered, starting from an
arbitrary initial state. In practical applications one expects to achieve the final
ordering as quickly as possible, so the selection of a good initial state may speed
up the convergence of the algorithms by orders of magnitude.

4.4 Point density of the models (one-dimensional case)

It was stated in Subsec. 4.2 that in the stationary state of learning, every model
vector is the average of input items projected into its neighborhood, weighted by
the neighborhood function. However, this condition does not yet tell anything
about the distribution of the model vectors, or their point density.

To clarify what is thereby meant, we have to revert to the classical vector
quantization, or the k-means algorithm [19], [20], which differs from the SOM in
that only the winners are updated in training ; in other words, the ”neighborhood
function” hci in k-means learning is equal to δci, where δci = 1, if c = i, and
δci = 0, if c �= i.

No topographic order of the models is produced in the classical vector quanti-
zation, but its mathematical theory is well established. In particular, it has been
shown that the point density q(x) of its model vectors depends on the probability
density function p(x) of the input vectors such that (in the Euclidean metric)

q(x) = C · p(x)1/3 , where C is a scalar constant.

No similar result has been derived for general vector dimensionalities in the
SOM. In the case that (i) when the input items are scalar-valued, (ii) when the
SOM array is linear, i.e., a one-dimensional chain, (iii) when the neighborhood
function is a box function with N neighbors on each side of the winner, and (iv)
if the SOM contains a very large number of model vectors over a finite range,
Ritter and Schulten [74] have derived the following formula, where C is some
constant:

q(x) = C · p(x)r , where

r = 2/3− 1/(32 + 3(N + 1)2) .

For instance, when N = 1 (one neighbor on each side of the winner), we have
r = 0.60.

For Gaussian neighborhood functions, Dersch and Tavan have derived a
similar result [15].

In other words, the point density of the models in the display is usually
proportional to the probability density function of the inputs, but not linearly:
it is flatter. This phenomenon is not harmful; as a matter it means that the SOM
display is more uniform than it would be if it represented the exact probability
density of the inputs.
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4.5 Border effects of the SOM

Another salient effect in the SOM, namely, in the planar sheet topology of the
array, is that the point density of the models at the borders of the array is a little
distorted. This effect is illustrated in the case in which the probability density
of input is constant in a certain domain (support of p(x)) and zero outside it.
Consider again first the one-dimensional input and linear SOM array.

In Fig. 3 we show a one-dimensional domain (support) [a, b], over which the
probability density function p(x) of a scalar-valued input variable x is constant.
The inputs to the SOM algorithm are picked up from this support at random.
The set of ordered scalar-valued models μi of the resulting one-dimensional SOM
has been rendered on the x axis.

Fig. 3. Ordered model values μi over a one-dimensional domain.

Fig. 4. Converged model values μi over a one-dimensional domain of different lengths.

Numerical values of the μi for different lengths of the SOM array are shown
in Fig.4. It is discernible that the μi in the middle of the array are reasonably
evenly spaced, but close to the borders the first distance from the border is
bigger, the second spacing is smaller, and the next spacing is again larger than
the average. This effect is explained by Fig. 3: in equilibrium, in the middle of
the array, every μi must coincide with the centroid of set Si, where Si represents
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all values of x that will be mapped to node i or its neighbors i − 1 and i + 1.
However, at the borders, all values of x that are mapped to node 1 will be in
the interval ranging from a to (μ2 + μ3)/2, and those values of x that will be
mapped to node 2 range from a to (μ3 + μ4)/2. Similar relations can be shown
to hold near the end of the chain for μl−1 and μl. Clearly the definition of the
above intervals is unsymmetric in the middle of the array and at the borders,
which makes the spacings different.

In Sec.5 we will be dealing with two-dimensional input vectors. If their density
function is constant in a square domain and zero outside it, we see similar border
effects in both dimensions as what we have in Fig. 4. For other forms of the input
density function the border effects are there, too, with a size that is relative to
the value of the density function near the borders.

In higher dimensions we encounter similar border effects in every dimension
of the input data vectors. Normally we are not concerned about them, because,
especially in larger arrays, the relative fraction of the border units is small, and
the model vectors are not shown. At most we may notice that the border nodes
of the SOM are occupied more densely than the nodes in the middle of the array,
but that may well be due to the fact that all input vectors that lie outside the
model vectors in the input space will be mapped to the side or corner nodes
of the SOM. On account of the border effects, some researchers have come to
suggest cyclic SOM arrays.

However, it will be interesting to notice that even the cyclic arrays are not
free of effects that resemble the border effects. I have in Fig. 5 a reproduced
picture from my book [39] where a ring-topology SOM is trying to approximate
the rectangular 2D density function. We can clearly see that at the ends of the
2D support where the ring has the sharpest folds we have similar point density
effects that are present at the ends of the linear 1D topology in Fig. 4. These
too are due to the neighborhood function. So, what is the argument for cyclic
topologies?

Fig. 5. Demonstration of ”fold effects” in ring topology.

At the end of Sec.5 we demonstrate that the ordering strength of the sheet-
topology SOM is substantial. Notice that in the k-means classification we cannot
define any 2D constellation of the model vectors, and thus there are no border
effects close to the convex hull of the k-means vectors. However, if we apply the
SOM algorithm only at every 50th training step and let the rest of the steps be
classical vector quantization steps, the SOM will anyway be materialized in the
2D form, and the border effects will be practically nonexistent.
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5 Practical construction of a two-dimensional SOM

5.1 Construction of a 2D SOM in one training phase

The first example describes an SOM process, in which the input vectors are two-
dimensional random vectors, and they have a uniform distribution over a square
area in the (ξ1, ξ2) space. Outside this area the density function is zero.

In this example, the SOM process will consist of one phase only, which takes
1,000,000 steps, and during which the learning-rate coefficient α(t) defined in
Eq. (3) is defined as a hyperbolically decreasing function. A step-size parameter
that is a hyperbolical function of time has been shown to provide the fastest
convergence in the simplest gradient-descent optimization problems., i.e., in the
minimization of error functions. Our heuristic choice in the present case is the
same:

α(t) = .3/(1 + t/300000).

The original stepwise-recursive SOM algorithm is now written in the MAT-
LAB code. The SOM array is rectangular and two dimensional, but since the
input vectors and models are also two dimensional, we might resort to higher-
dimensional arrays in computation, as we will see. However, we start by indexing
the model vectors using a one-dimensionally running index i, and initialize their
values by random numbers.

M = rand(64,2); % initialization of a 64-model SOM array

In this example the process consists of 1,000,000 steps. At each step, first,
the input vector X is generated. After that, the index c of the winner node is
computed. Let Q represent the quantization error, i.e., the norm of the difference
of an input vector and the best-matching model. This error and the winner index
c are computed as

Q = zeros(64,1); % quantization error

for t = 1:1000000

X = rand(1,2); % training input

% Winner search

for i = 1:64

Q(i,1) = norm(X(t,:) - M(i,:));

end

[C,c] = min(Q);

Here c is the index of the winner. Next we have to define a neighborhood set
around the winner. The models in this neighborhood are updated at step t.

Let the learning-rate coefficient α be denoted by a in the MATLAB code.
Let denom be its time-dependent parameter (denominator in the expression of
a), and let r stand for the time-dependent value of the half-width of the neigh-
borhood set (when using a bubble-function neighborhood). In order to make the
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SOM array explicit, let us reshape it such that the running index of the model
vector is converted into the rectangular coordinates of the SOM array. So, first
we reshape the M and X matrices into three-dimensional arrays. After that we
compute the indices of the horizontal row and vertical column ch and cv, re-
spectively, of the SOM array, and define the neighborhood set around the winner
node c, over which the updating shall be made. The size of the neighborhood
radius r and the learning rate a decrease hyperbolically in time.

% Updating the neighborhood

denom = 1 + t/300000; % time-dependent parameter

a = .3/denom; % learning coefficient

r = round(3/denom); % neighborhood radius

M = reshape(M,[8 8 2]);

X = reshape(X,[1 1 2]);

ch = mod(c-1,8) + 1; % c starts at top left of the

cv = floor((c-1)/8) + 1; % 2D SOM array and runs downwards!

for h = max(ch-r,1):min(ch+r,8)

for v = max(cv-r,1):min(cv+r,8)

M(h,v,:) = M(h,v,:) + ...

a*(X(1,1,:) - M(h,v,:));

end

end

Both M and X have to be reshaped again to their original dimensionalities,
which are needed in the winner search at the next training step t:

M = reshape(M,[64 2]);

X = reshape(X,[1 2]);

end

This concludes the SOM algorithm. Its computation on a 2 GHz home com-
puter took 117 seconds. Next we plot the model vectors by asterisk symbols (*),
and connect them by horizontal and vertical auxiliary lines that link together
the nodes of the SOM array. These lines are used to show which model vectors
are horizontal and vertical neighbors in the SOM array. The model vectors are
represented by the reshaped coordinate vector M in the MATLAB code.

plot(M(:,:,1), M(:,:,2),’k*’,M(:,1,1),M(:,1,2),’k-’,M(:,2,1), ...

M(:,2,2),’k-’,M(:,3,1),M(:,3,2),’k-’,M(:,4,1),M(:,4,2),’k-’, ...

M(:,5,1),M(:,5,2),’k-’,M(:,6,1),M(:,6,2),’k-’,M(:,7,1), ...

M(:,7,2),’k-’,M(:,8,1),M(:,8,2),’k-’,M(1,:,1),M(1,:,2),’k-’, ...

M(2,:,1),M(2,:,2),’k-’,M(3,:,1),M(3,:,2),’k-’,M(4,:,1), ...

M(4,:,2),’k-’,M(5,:,1),M(5,:,2),’k-’,M(6,:,1),M(6,:,2),’k-’, ...

M(7,:,1),M(7,:,2),’k-’,M(8,:,1),M(8,:,2),’k-’,M(:,3,1), ...

M(:,3,2),’k-’,M(:,4,1),M(:,4,2),’k-’,0,0,’.’,1,1,’.’);

The drawing of the the points 0,0,’.’,1,1,’.’ has been added in order to
force the coordinates of the framed area to range from 0 to 1.
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Fig. 6. A sequence of model vectors [M(:,1) M(:,2)] resulting in the one-phase train-
ing process after zero, 10,000, 100,000, and 1,000,000 training steps, respectively. The
model vectors have been drawn by the asterisk symbols. The models that are hori-
zontal or vertical neighbors in the SOM array have been connected by the network of
auxiliary lines, to show their mutual order. The fourth subimage is directly produced
by the above script, the rest have been sampled during the process.

In Fig. 6 we plot the model vectors in the (M(:,1), M(:,2)) coordinate
system and represent them by asterisk symbols (*), which are linked by auxil-
iary lines in order to indicate which model vectors are horizontal and vertical
neighbors in the SOM array. So this is a representation of the model vectors
in the input space. The density function of the input vectors was constant in
the framed square area and zero outside it. On the top left we see the random
model vectors as they were initialized, and then a sequence of intermediate states
of the SOM process after 10,000, 100,000 and 1,000,000 training steps, respec-
tively. The above script produces the fourth image directly, and the rest have
been sampled during the process. There are still random deviations left after
1,000,000 steps; however, the two-phase process to be explained next will pro-
vide a slightly smoother and accurate organization result. Also, if we had used
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the Batch Map algorithm as will be explained later, the convergence would have
taken place faster and more robustly.

5.2 Coarse and fine training phases

It has turned out that we can obtain a more accurate equilibrium state if two
training phases, a coarse and a fine one are used. If α were changing all the time
like in the one-phase process, the convergence of the process would be slower,
because the radius of the neighborhood function depends on time. However, if
we apply a much shorter coarse training process, during which the topographic
order of the mi is formed, and continue training with a fine training process, in
which the neighborhood function is narrow but constant in time, we obtain a
more accurate final state with the same total number of training steps, as shown
in Fig. 7.

Fig. 7. The same process as described in Fig. 6, but the neighborhood function was
made to decrease only during the coarse training phase, which in this example consisted
of 100,000 training steps. After that the neighborhood function was kept constant
(containing only the nearest nodes) for 900,000 steps. Left image: The SOM after the
coarse training phase. Right image: The SOM after fine training, whereupon the total
number of training steps was the same as in the previous example, namely, equal to
1,000,000.

5.3 Compensation for the border effects

It may have to emphasized that in practical problems, in which the dimensional-
ity of input vectors is higher than two, we usually don’t show the model vectors.
Instead we usually show the nonlinear projections of the input vectors on the
2D SOM array. Therefore the border effects, with an appreciably-sized SOM, do
not become visible and do not play any significant role in visualization. I have
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come to think of one particular application only, namely, the demodulation of
quantized signals to be discussed in the next section, in which the model vectors
define the discrimination levels for the demodulation of quantized signals, and in
which the elimination of the border effects is of utmost importance.

An attempt to fine tune the SOM by k-means clustering. The k-
means clustering has been used extensively as an adaptive method in digital
signal transmission. It has the particular advantage that it has no border effects
in quantization; on the other hand, it has no ordering power neither. Also, al-
though the initial values were topographically ordered, this order may be lost
partly in fine tuning by the k-means clustering.

In the above script, the k-means clustering process is obtained by setting the
neighborhood radius r to the value zero.

The result of this experiment is shown by the right-hand subimage of Fig. 8.
In the first instance, the k-means clustering is trying to minimize the quantizing
error, which happens when the constellation of the models is a hexagonal grid in
the input space; that is clearly what is happening in Fig. 8.

Fig. 8. The same process as described in Fig. 7, but in fine training, 900,000 steps of
the k-means clustering algorithm were used. The constellation of the models now tends
to be hexagonal, which minimizes the mean quantization error. The coarse training,
100,000 steps, was similar as in Fig. 7. Notice that with a different sequence of random
numbers the result of coarse training is slightly different.

Compensation for border distortion by a mixture of SOM and
k-means algorithms. A compromise between accurate adaptation and self-
ordering is obtained if most training steps are made by the k-means clustering,
but, say, every 50th step is an SOM step. Even such rare SOM steps will be
able to stabilize the topographic ordering and smooth the data effectively, while
the k-means clustering steps compensate for the border effects, as shown in the
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right-hand subimage of Fig. 9. Although the k-means algorithm was applied for
98 per cent of the steps, nonetheless it was not able to minimize the mean quan-
tization error, which needs the hexagonal constellation. The effect of the rare
SOM steps is so strong that in the first instance they try to keep the grid form
as square, because it was so determined by the neighborhood function. So, if one
is really concerned about the border effects, one might try this same idea also
in all of the other applications.

Comment. If we had used the Gaussian neighborhood function and a usual
two-phase training, and if we had defined its radius (during the 100,000 steps
in this example) like above, but during the final 900,000 steps we had kept the
radius at a value that is significantly smaller than unity (but at any rate greater
than zero), we would probably have obtained the same result as in Fig. 9.

Fig. 9. The coarse training, 100,000 steps, was similar as in Figs. 7 and 8. In fine train-
ing, a mixture of k-means clustering and SOM training steps was used. The k-means
algorithm tends to approximate the input density function without border effects, but
the SOM algorithm, although applied only for two per cent of the training steps, over-
rides it, provides for more effective convergence and takes care of keeping the model
vectors as a topographically ordered square grid.
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6 Preliminary example: Demodulation of TV signals

6.1 The task

Before we start with the SOM Toolbox software package and its application
to various practical problems, which is the main topic in this book, it may be
helpful to discuss a very simple, low-dimensional application of the SOM. It is
used in the demodulation of TV signals, and at the same time we will be able
to gain a very concrete understanding of the operation of the SOM.

Practically all telecommunications of today are based on quantized signals
and their digital processing. However, instead of using streams of bits as usual in
wired transmission, the capacities of wireless communications are far more effec-
tively utilized if the analog signal values are approximated by several quantized
reference levels. For instance, in the transmission of TV signals, the so-called
QAM (quadrature-amplitude modulation) is nowadays a standard.

Fig. 10 represents the principle of the sixteen-level quadrature-amplitude
modulation, abbreviated 16QAM. There are two independent carrier waves that
have the same frequency but a mutual phase shift of 90 degrees. They are trans-
mitted concurrently through the same frequency channel. Each one of these
carrier waves is modulated by four quantized discrimination levels: one wave by
the in-phase (I) components, and the other wave by the quadrature (Q) compo-
nents, respectively. A combination of these partial waves can encode and decode
16 bits concurrently.

In the contemporary TV techniques, using 16 quantization levels in each
subchannel, one is able to implement a 256QAM, or 256-bit parallel transmission.

Since the amplitude modulation must anyway be accomplished by analog
means, various disturbances and variations of signal amplitudes cause many
kinds of distortions to the signal levels. In radio traffic the signals may reach the
receiver through multiple (reflected) paths. Nonetheless the signals can mostly
be kept clustered. In Fig. 10 we see two kinds of nonlinear distortions of the
signal levels and their relative phases, resulting in typical QAM.

The I and Q signals are demodulated by discriminating them in the 16QAM
into four levels each, using four reference levels. Obviously the main problem
in the compensation of distortions is to let the reference levels to follow up the
centroids of the clusters. This could be accomplished by the k-means clustering
(vector quantization) algorithm, but some extra stabilization would then be
needed. A new idea is to use the SOM for the same purpose, because no extra
stabilization is then necessary, and the convergence of the SOM algorithm is
significantly faster and more robust than that of the vector quantization.

6.2 Using the SOM as an adaptive demodulator

Now we will now see in what way the SOM can accomplish this same task
effectively. In the practical example we use the 64QAM which quantizes the
analog signal values into 64 clusters. The input data consist of a stream of noisy
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Fig. 10. (a) Ideal signal constellation of a sixteen-level quadrature-amplitude modula-
tion (16QAM) used in digital communications systems when in-phase (I) and quadra-
ture (Q) components occupy discrete lattice points in the IQ coordinate system. (b)
Typical ”corner collapse” distortion, in which the corner clusters are shifted towards
the center, due to saturation of amplitudes at high signal level.. (c) The ”lattice col-
lapse” distortion, in which the relative phase of the I and Q components is changed,
resulting in an oblique lattice.

two-dimensional samples x(t) = [ξ1(t), ξ2(t)] labeled by the sampling time t and
clustered as shown on the left of Fig. 11.

There are 64 two-dimensional model vectors, which are also functions of
time: mi(t) = [μi1(t), μi2(t)], i = 1, 2, ..., 16 . These model vectors are computed
by the mixture of the k-means clustering and SOM algorithms discussed earlier.
This method keeps the model vectors topographically ordered all the time and
does not exhibit any significant border distortions. The right-hand side of Fig. 11
shows how the noisy signals are discriminated into 64 clusters. In the right image
the lattice points have adaptively converged into a closely optimal constellation,
and the discrimination levels between them have been computed by the Voronoi
tessellation [93]. The lines of this tessellation separate the clusters optimally,
every signal into its closest lattice point.

We may still be interested in seeing the program code of this simulation. It
starts with the definition of the 64 ideal lattice points used in the quantization of
the signals. We may imagine that the lattice points are ideal at the sending end,
and the noise comes from transmission only. Their values range equidistantly
from -3.5 to +3.5 units in each channel:
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Fig. 11. Left image: Noisy signal constellation in a 64-level quadrature-amplitude mod-
ulation (64QAM) used in digital communications. Right image: Voronoi diagram, which
shows the two-dimensional discrimination levels used to demodulate the QAM signals.
Any of the clusters in the left image will be discriminated into one of 64 discrete sets.

M = zeros(64,2);

M(:,1) = [1 3 5 7 9 11 13 15 ...

1 3 5 7 9 11 13 15 ...

1 3 5 7 9 11 13 15 ...

1 3 5 7 9 11 13 15 ...

1 3 5 7 9 11 13 15 ...

1 3 5 7 9 11 13 15 ...

1 3 5 7 9 11 13 15 ...

1 3 5 7 9 11 13 15 ];

M(:,2) = [1 1 1 1 1 1 1 1 ...

3 3 3 3 3 3 3 3 ...

5 5 5 5 5 5 5 5 ...

7 7 7 7 7 7 7 7 ...

9 9 9 9 9 9 9 9 ...

11 11 11 11 11 11 11 11 ...

13 13 13 13 13 13 13 13 ...

15 15 15 15 15 15 15 15];

for i = 1:64

M(i,:) = (M(i,:)-8)/2;

end

After that, 100,000 samples of noisy (received) signal values X are defined.

X = zeros(1,2);
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% Winner search

for t = 1:100000

X(1,1) = floor(8*rand) + .15*randn -3.5;

X(1,2) = floor(8*rand) + .15*randn -3.5;

Now we start adapting the reference values of the QAM to the received
signals, using a constant learning-rate coefficient; since we want to make this
system continuously adapting to new signals, we do not want the coefficient
change in time, and we keep it at a tentative small value a = .01.

% Winner search

Q = zeros(64,1);

for i = 1:64

Q(i,1) = norm(X(1,:) - M(i,:));

end

c = min(Q);

% Updating

M = reshape(M,[8 8 2]);

X = reshape(X,[1 1 2]);

ch = mod(c-1,8) + 1;

cv = floor((c-1)/8) + 1;

if mod(t,50) == 0 % for every 50th input

r = 1; % SOM neighborhood radius

else

r = 0; % k-means clustering step

end

a = .01; % learning rate

for h = max(1,ch-r):min(8,ch+r)

for v = max(1,cv-r):min(8,cv+r)

M(h,v,:) = M(h,v,:) + a*(X(1,1,:) - M(h,v,:));

end

end

M = reshape(M,[64 2]);

X = reshape(X,[1 2]);

end

The final two lines were needed to reshape M and X for the next winner
search. This concludes the adaptation algorithm. What we still need are the
discrimination levels shown at right in Fig. 11:

figure(1);

for subimage = 1:2

subplot(1,2,subimage)

if subimage == 1

for t = 1:64
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Y(t,1) = floor(8*rand) + .15*randn-3.5); % Y = X

Y(t,2) = floor(8*rand) + .15*randn-3.5);

end

plot(Y(:,1),Y(:,2),’k.’)

end

if subimage == 2

voronoi(M(:,1),M(:,2))

end

end

filename ’QAM’;

print(’-dpng’, [filename ’.png’]);

Next we show that the SOM lattice, starting from its standard position in
Fig. 11, will follow up to the collapsed signals and produce new, optimal dis-
crimination levels. It will do that in 10,000 training steps, as demonstrated in
Fig. 12.

The collapsed inputs X, which contain an even larger noise amplitude .2*randn,
can be simulated by the following lines:

for t = 1:10000

E = floor(8*rand);

F = floor(8*rand);

X(1,1) = E + .2*randn -3.5;

X(1,2) = .08*E + F + .2*randn -3.75;

In order to fit the noisy signals (with outliers) to the same size of a frame as
the Voronoi diagram of the SOM models, we cut the Y signals by the instruction:

Y = Y(find(Y(:,1)>-4 & Y(:,1)<4 & Y(:,2)>-4 & Y(:,2)<4),:);

Fig. 12. Left subimage: Noisy signal constellation, where the lattice of QAM modula-
tion is further deformed like in ”lattice collapse.”. Right subimage: Voronoi diagram of
the deformed QAM signals.
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7 Batch computation of the SOM

7.1 The algorithm

In practice, the batch training algorithm is usually preferred.

In this section we discuss the batch computation of the SOM. If the input
vectors were Euclidean, the principal-component method is recommended for the
initialization. For general distance measures the random initialization is always
possible; the optimization of initialization for general metrics, however, is very
tricky, and cannot be discussed here.

In this guide we introduce a batch computation process for the construction of
the SOM. There are several reasons for it: 1. There is no time-variable learning-
rate parameter α(t) in it. 2. The batch algorithm converges faster than the
stepwise ”gradient” method. 3. If a two-phase learning is used, as described in
the next subsection, if the neighborhood function during the fine-tuning phase
is held constant, and if the set of training inputs is the same at each iteration,
the algorithm terminates exactly in a finite number if iterations, which can be
utilized for the stopping of computation. 4. We will later see that the batch
algorithm can be generalized for non-vectorial data, too.

Consider Fig. 13, where a two-dimensional hexagonal array of nodes, depicted
by the circles, is shown. With each node i, a model mi is associated.

Also a buffer memory, depicted by a rectangular symbol, is associated with
each node. In the beginning of one training cycle each buffer first sums up the
values of all of those input vectors x(t) that are mapped to this node, and also
stores the number of addends.

The updating of the x(t) is now made in the following way. In this illustra-
tive example we assume a ”bubble” neighborhood function that has the value
1 in a neighborhood set Ni of nodes, consisting of the nodes up to a certain
distance from node i, and is equal to zero otherwise. In Fig. 13 only the nearest
neighbors of the winner belong to Ni. According to Eqs.(4) and (5), when using
this simplified neighborhood function hci, the equilibrium value of every model
must coincide with the mean of the x(t) falling into its neighborhood set Ni.
We try to approach to this equilibrium state in an iterative way. In one cycle
of iteration, we first compute the sum of all x(t) over Ni, that is, the sum of
all of the partial sums that have been accumulated in the buffers of Ni. Then
we divide this total sum by the total number of input vectors mapped to Ni,
taken from the buffers. A similar mean is computed for every node i, i.e. over
the neighborhoods around all of the nodes. Updating of the mi then means that
the old values of the mi are replaced by the computed means in one concurrent
computing operation over all nodes of the array. This kind of an iterative cycle
takes us closer to the equilibrium, and concludes one training cycle.

Training cycles of the above kind are repeated, always first clearing all buffers
and thereafter distributing new copies of the input vectors under those nodes,
the (updated) models of which match best with the new input vectors. New
means over the Ni are computed and made to replace the old mi, and these
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Fig. 13. Illustration of one cycle in the batch-training process. The input data items
x(t) are first distributed into the buffer memories (rectangular symbols) associated
with their best-matching models, and summed up there with the earlier contents (like
x(1) + x(4) at node mf ). The number of addends is also stored with the sum in
the buffer. According to Eqs.(4) and (5), when using the definition of the simplified
neighborhood Ni, the equilibrium value of every model must now be the mean of the
vectors x(t) over the corresponding neighborhood set Ni. Therefore we form the total
sum of the partial sums in Ni and divide this total sum by the total number of addends
in Ni. Such sums, computer for every node, then replace all of the old values mi in
one concurrent operation over the whole SOM array. This training cycle is repeated
iteratively, always first clearing up all buffer memories and replacing the old means by
the new means, until the wanted equilibrium is reached.
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cycles are repeated until the wanted equilibrium is reached. Usually we need a
few dozens of iterative cycles.

A process that complies even better with the stepwise recursive learning is
obtained if the means are formed as weighted averages, where the weights are
related to each other like the hci. Here c is the index of the node, the model of
which is updated, and i stands for the indices of the nodes in its neighborhood.

A discussion of the convergence of the batch-computing method has been
presented in [8].

7.2 Two training phases, a coarse and a fine one

In practice, the training process usually consists of two phases: coarse
and fine training, respectively.

It has still to be emphasized that so far there does not exist any mathematical
definition of the optimal training process. A successful use of the SOM is only
based on a large amount of experience, and the advice given here is also based
on a large number of observations from practice. The recommendations given
below are believed to work in usual applications and for SOM arrays of modest
size (up to a few thousand nodes), and when this advice has been followed, no
problems have been encountered in practice.

It has been realized ever since the introduction of the SOM that the width
of the neighborhood function cannot be selected too small in relation to the
dimensions of the SOM array, because then the ordering may be disturbed and
various kinds of ”folds” to the map may be formed and left permanently. This
handicap is an intrinsic property of the nonlinear process on which the SOM
is based. However, if the width of the neighborhood function is initially large
enough and constant, say, on the order of 20 per cent of the larger dimension of
the SOM array or more, these ”folds” will be smoothed out in a modest num-
ber of training cycles. Then, however, although the SOM seems to be globally
ordered, the map is still too ”stiff” and cannot describe the fine details of the
input data. Nonetheless, if the ”folds” have once been smoothed out, they will
never appear again, however long the training is continued.

Narrowing of the neighborhood function in coarse training. Imagine
now that the training is made to consist of successive major phases, each con-
sisting of several training cycles. During each phase the neighborhood function
is held constant, but its width is made monotonically smaller in the consecutive
phases. If the neighborhood width is reduced sufficiently slowly, the global order
achieved in the first phase will not be destroyed in continuation. On the other
hand, since the neighborhood function is narrower during the successive phases,
the ordering starts to take place at a finer resolution. Finally the SOM will be
smoothed out globally, with increasing resolution, and no folds will appear. This
effect was already found in the first SOM experiments around 1982.
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It is possible to use a single training phase, during which the width of the
neighborhood function is made a function of the training step. However, a quicker
and more accurate convergence is obtained, if a limited number of training cycles
are divided into coarse and fine training phases.

Convergence in a finite number of cycles. Another, more recent exper-
imental observation is that if the neighborhood function is held constant during
the last iterations, whatever its width is, and the same input data are applied
iteratively, the ordering process will be stabilized (converge) in a finite number
of training cycles. So far we have found no exceptions to this observation.

Based on plenty of experiences , we have thus decided to use two main train-
ing phases, a coarse and a fine one. During the coarse-training phase, the width
of the neighborhood function is made to decrease linearly from an initial value
that is, say, 20 per cent of the longer side of the SOM array, to a final value
which is not smaller than, say, five per cent of the shorter side (but at least a
half array spacing). With modest sizes of the SOM arrays (say, at most a few
thousands of nodes), the number of batch training cycles required during this
phase is usually not more than a few dozen.

During the fine-training phase the neighborhood function shall have the value
that was used last in coarse training, and is held constant. If the training set is the
same at each iteration, the fine training phase is continued until the corrections
to the SOM weight vectors become zero. This usually occurs in less than a few
dozens of cycles. The SOM process has then reached a stable state exactly.

7.3 Dot-product maps

The similarity of two metric vectors is often expressed as their dot prod-
uct.

For metric vectors, a practical computation of the SOMmay be based on their
dot products. For Euclidean vectors this method is particularly advantageous, if
there are plenty of zero elements in the vectors, because they are skipped in the
evaluation of similarities. However, the model vectors mi, for their comparison
with the input x, must be kept normalized to constant length all the time.
Instead of eq.(2), the index of the winner location is now defined by

c = argmaxi{dot(x,mi)} . (6)

Since the computation of the SOM is in practice carried out by the batch
algorithm, the mapping of all of the input items onto the respective winner nodes
(i.e., the associated lists) is made in a similar way as described before.

A normalization of the mi to constant length shall be made after each iter-
ation cycle.

It must be mentioned that the SOM Toolbox does not have provisions for
computing the dot-product maps.
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8 Various measures of distance and similarity

The distance between two vectors is a measure of their dissimilarity. In-
ner products, especially the dot product are direct measures of similarity.
More specific measures of distance and similarity are defined in this sec-
tion.

There exist many versions of the SOM, which apply different definitions of
”similarity.” This property deserves first a short discussion. ”Similarity” and
”distance” are usually opposite properties.

If we deal with concrete objects in science or technology, we can then base
the definition of dissimilarity on basic mathematical concepts of, say, distance
measures between attribute vectors. However, if the attributes have a different
physical or other nature, different units are used for them, and then their values
are expressed in different scales. The scales must first be normalized as dis-
cussed in the next paragraph. After that, eventually, the various features must
be weighted by information-theoretic measures, or experimentally selected fac-
tors to emphasize particular features in self organization. Such weighting is often
necessary when analyzing problems in which human decisions are involved, e.g.,
problems in finance. On the other hand, in science and technology, normalization
of the scales without weighting is often a sufficient strategy.

Sets of various indicators collected in statistical studies are usually also ex-
pressed as real vectors, consisting of numerical results or other statistical data,
which have to be normalized, too.

In scientific problems, various kinds of spectra and other transformations can
be regarded as multidimensional vectors of their components.

Scaling of features. For normalization, the simplest method is to rescale
the variables so that either their variances, or their maxima and minima, re-
spectively, become identical. After that, some standard distance measure, such
as the Euclidean, or more generally, the Minkowski distance, etc., can be tried,
the choice depending on the nature of the data. It has turned out that the
Euclidean distance, with normalization, is already applicable to most practical
studies, since the SOM is able to display even complex interdependencies be-
tween the variables in its display. The local magnification of the SOM areas
depends mainly on the density function of the corresponding input items, and
not so much on the metric chosen to describe them.

Inner products and normalization. A natural measure of the similarity
of vectorial items is in general some inner product. In the SOM research, the
dot product is frequently used, especially in very large SOMs. This measure also
complies better with the biological neural models than the Euclidean distance.
However, all of the the model vectors mi of the SOM, for their correct compar-
ison with the same input x, must then be kept normalized to constant length
all the time. If the vector dimensionality is high, and also the input vectors are
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normalized to constant length, the difference between SOMs based on the Eu-
clidean distances and the dot products is insignificant. (For the construction of
Euclidean and dot-product SOMs, cf. Subsections 7.1 and 7.3, respectively.) On
the other hand, if there are plenty of zero elements in the vectors, the compu-
tation of dot products is correspondingly faster, because the zero elements can
simply be skipped. This property was utilized effectively especially in the fast
computation of document maps [31].

Natural variations in pictures. Before proceeding further, it will be nec-
essary to emphasize a basic fact. A picture, often given as a set of pixels or other
structural elements, will usually not be applicable as such as an input vector.
The natural variations in the pictures, such as translations, rotations, variations
of size, etc., as well as variations due to different lighting conditions are usually
so wide that a direct comparison of the objects on the basis of their appearances
does not make any sense. Instead, the classification of natural items shall be
based on the extraction and classification of their characteristic features which
must be as invariant as possible. Features of this type may consist of color spec-
trograms, expansions of the images in Fourier transforms, wavelets, principal
components, eigenvectors of some image operators, etc. If one can describe the
input objects by a restricted set of such invariant features, the dimensionality of
the input representations, and the computing load are reduced drastically.

The selection of a characteristic set of features and their automatic extrac-
tion from the primary observations must often be based on heuristic rules. In
biology, various feature detectors have been developed in a very long course of
evolution.

Structural features. Especially in the recognition and understanding of
images, various artificial-intelligence methods have been developed in order to
achieve the highest possible degree of invariance with respect to different im-
age transformations such as lighting conditions, shades, translations, rotations,
scales, of deformations. The first step is segmentation of a picture into areas in
which the shade of gray or color is homogeneous, and edge detection in which
steep changes of shades are identified. Typical forms from these segments are
identified by comparison with previously recorded forms, and so a collection of
primitives for the picture are found. The topological relations between the prim-
itives are parsed by a picture grammar, and the result is usually presented as
a parsing tree. A parsing tree can be converted into a coded entity, and by the
comparison of the parsing tree with a collection of standard parsing trees one is
able to identify simultaneously occurring objects in the pictures, and to classify
them invariantly with respect to various transformations and distortions.

The application of the SOM to structural recognition is still in its infancy,
and we do not discuss any problems of that type in this book.
.

Features of texts. For more complex comparisons one may also look for
other kinds of features to be used as the vector elements. For instance, in text
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analysis, complete documents can be distinguished from each other based on
their word statistics, e.g., word histograms, whereupon very careful attention
must be paid to the relative occurrence of the words in different texts; cf. [75].
So, the elements of the histogram, corresponding to the various words, must be
weighted by multiplicative factors derived from the relative occurrences of the
words. For weighting, one can use the statistical entropy (actually, negentropy)
of a word, but the words in histograms can also be weighted (and thus, rare
and very common words can be ignored) based on their inverse document fre-
quency (IDF). The ”document frequency” means in how many documents in a
text corpus a particular word occurs, and IDF is the inverse of this figure. With
proper weighting, the word histograms, which constitute the feature vectors, can
be restricted to, say, some hundreds of dimensions.

Features of symbol strings. The strings of symbols constitute another
common type of variables. Except in texts, string variables occur, e.g., in bioin-
formatics and organic chemistry: in genetic codes, sequences of atoms in macro-
molecules etc.: cf., e.g., [65] and [42]. Normally the strings are of very different
length. Some kind of edit distance, i.e., the number of elementary editing opera-
tions needed to transform one string into the other is a very effective definition
of the distance between string variables. These operations must normally be
weighted based on the statistics of the various errors. For very long strings, such
as the protein sequences, some heuristic shortcut computations of distances such
as those applied in the wide-spread FASTA method ([67] and [68]) may be nec-
essary. Such distance measures have often been precomputed in the databases.

Contextual similarity. There also exist other, more abstract kinds of sim-
ilarity measures. One of them is the contextual similarity of words. Consider a
word in a text, within the context of its neighboring words. If each word in the
vocabulary is represented by a random code, the mutual correlations between
the representations of the words remain very small. However, the measure of
similarity of two local contexts, e.g., triplets of three successive words in the
text, then ensues from the occurrence of the same random codes in identical po-
sitions in the triplets. Analyses of the semantic values of words can be based on
contextual-similarity studies, and very deep linguistic conclusions can be drawn
from such analyses, as demonstrated in [45].

Dynamical features. An important task is to compare dynamic phenom-
ena. This becomes possible, if the models are made to represent dynamic states.
A very important discussion of dynamic SOMs has been presented by [21].

Various transformations in the time scale constitute an elementary category
of dynamic features. For instance, at the end of this book we have Section 32 in
which the SOM is regarded as a filter bank for temporal features.
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9 A view to SOM software packages and related
algorithms

The SOM discussed here is not the only version of self-organizing maps,
but especially its batch computation is believed to be fastest, especially
for very large maps.

The basic self-organizing map (SOM) principle as discussed in this book
has been used extensively as an analytical and visualization tool in exploratory
data analysis. It has had plenty of practical applications ranging from industrial
process control and finance analyses to the management of very large document
collections. New, very promising applications exist in bioinformatics. The largest
applications so far have been in the management and retrieval of textual docu-
ments.

SOM software packages. Several commercial software packages as well
as plenty of freeware on the SOM are available. This author strongly encourages
the use of two public-domain software packages developed by the team of our
laboratory: the SOM PAK [81] and the SOMToolbox [82]. Both packages contain
auxiliary analytical procedures, and especially the SOM Toolbox, which makes
use of the MATLAB functions, is provided with good and versatile graphics as
well as thoroughly proven statistical analysis programs of the results.

This book will mainly apply the basic version of the SOM. Nonetheless there
may exist at least theoretical interest in different versions of the SOM, where
some of the following modifications have been introduced.

The SOM PAK. Our first SOM software package, the SOM PAK was pub-
lished in the late 1980ies. It was written in C++, and meant for a professional
package for big problems: the C++ implementation is significantly faster than
MATLAB. On the other hand, although it had scripts for defining the SOM
arrays, it did not contain complete graphic programs of its own, a so the users
had to resort to graphic tools of their own. Neither does it contain the batch
training algorithm.

The construction of the SOM in SOM PAK is carried out by command lines,
like the som lininit, som randinit, som seqtrain and som batchtrain func-
tions of MATLAB. An example of initialization is

lininit -xdim 16 -ydim 12 -din file.dat -cout file.cod -neigh gaussian -topol
hexa

Here -din is the input data file and -cout the model data file; the rest may
be self-explanatory. A typical simple training sequence is defined by

vsom -din file.dat -cin file1.cod -cout file2.cod -rlen 10000 -alpha 0.03
-radius 10



45

where cin is the file where the initialized models are taken from, -rlen is the
number of training steps, -alpha is the value of the initial training-rate parameter
α which decreases to zero during learning, and -radius is the initial neighbor-
hood radius which decreases to one during training.

Various topologies of the SOM array. In this book, the SOM array is
mostly taken as two dimensional, regular, and hexagonal. This form of the array
is advantageous if the purpose is to visualize the overall structure of the whole
data base in one image. One of the different versions of the array, developed, e.g.,
by the BLOSSOM Team in Japan in Tottori University [80], is spherical. Such
cyclic ”topologies,” cylindrical, spherical, or toroidal, may have some meaning if
the data themselves have a cyclic structure, or if the purpose is to avoid border
effects of the noncyclic array of nodes. This may be the case if the SOM is used
for process control, for the continuous and homogeneous representation of all
possible process states.

The SOM Toolbox contains parameters in the initializing functions by which
the topology of the array can be defined as a straight sheet, a cylinder, or a
toroid.

Another, often suggested version of the SOM is to replace the regular array
by a structured graph of nodes, where the structure and the number of nodes are
determined dynamically; cf., e.g., [18].

Other mathematical principles. Then, of course, there arises a question
whether one could define a SOM-like system based on quite different mathemat-
ical principles. One of the interesting suggestions is the generative topographic
mapping (GTM) introduced in [6]. It is based on direct computation of the
topological relations of the nodes in the array. A different, theoretically deep
approach has been made by [88], using information-theoretic measures in the
construction of the SOM topology.

Perhaps one of the main virtues of the basic SOM algorithm is that one can
compute really large mappings in reasonable time, using only personal comput-
ers.

Clustering methods. Finally we must remind that the traditional method-
ology for the representation of similarity relations between data items is to cluster
them according to some similarity or distance measure. The classical clustering
algorithms as described by [3], [22], [30], and [86], however, are usually rather
heavy computationally, since every data item must be compared with all of
the other ones, maybe reiteratively. For masses of data this is obviously time-
consuming. The remedy provided by the SOM is to represent the set of all data
items by a much smaller set of models, each of which stands for a subset of sim-
ilar or almost similar data items. One also has to realize that the SOM forms a
nonlinear projection of the input density function onto the SOM array, where-
upon the similarity relationships between all data items in the input data base
become explicit, which is not due in usual clustering methods.



46

10 The SOM Toolbox

The main reason for concentrating on a special software package, called
the SOM Toolbox, is that it contains all of the main SOM functions and
good graphics tools in a concise form. We strongly recommend this pro-
gram package, developed in our laboratory, because it is based on a long
experience and justified by many demanding projects. It has been intended
for professional use and contains a lot of auxiliary diagnostic programs.
Since this guidebook is intended for a starter, we shall concentrate on the
basic SOM functions.

10.1 General

In order to obtain a ”hands-on” experience of the SOM algorithm, many people
like to program it themselves. In general this is a good practice, and if you like
it, you are welcome to do it first. However, the SOM algorithm defines a highly
nonlinear dynamic process, and like many other nonlinear dynamic phenomena,
it may behave in unexpected ways, depending on the training sequences and
parameters defined. The main reason for recommending the use of readily avail-
able SOM software packages is that there are many details in them chosen after
a long experience. In good software packages there are also programs for the
monitoring of the training process and diagnostic programs for the checking and
testing of the results.

One of the widest-spread SOM software packages is the SOM Toolbox devel-
oped in our laboratory. It is compatible with the MATLAB, so it can utilize all of
the functions of the latter, including versatile graphics and diagnostic programs.
A lot of auxiliary functions, not only for the SOM itself, but also for auxiliary
tools have been developed by ourselves.

The SOM Toolbox was created for very pragmatic reasons. The SOM algo-
rithm had been used by us in many cooperative projects, with industry as well
as in financial applications, and the first SOM software package, the SOM PAK,
was also developed in our laboratory. We needed a good standard platform for
experimentation as well as for industrial implementations. Also good general-
purpose visualization tools were needed. The first version of the SOM Toolbox
was released in 1996, and is has been updated a few times since then, taking the
development of the MATLAB into account [89] [90] [91].

How to get the SOM Toolbox? The SOM Toolbox can be downloaded
freely from the Internet:

http://www.cis.hut.fi/projects/somtoolbox/documentation/;
http:// www.cis.hut.fi/projects/somtoolbox/package/papers/techrep.pdft.

It needs the MATLAB version 5 or higher, and a GUI interface is also needed.
It is a public-domain software with very mild restrictions to commercial appli-
cation. For scientific purposes it can be used completely freely.
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10.2 The SOM scripts

In this subsection we define the most essential features of the SOM scripts
and introduce the most central SOM Toolbox functions.

A MATLAB script is a complete program code that consists of general in-
structions and functions. The MATLAB program package contains a great num-
ber of its own general functions. The program package SOM Toolbox contains
extra MATLAB functions developed by the SOM Programming Team of our
laboratory.

A script normally contains following kinds of parts:

1. Definition of parameters.
2. Loading of input data.
3. Preprocessing of input data.
4. Calling of functions.
5. Plotting.
6. Saving the results in files.

The central functions in the computation of the SOM are usually: 4.1. Initial-
ization of the models. 4.2. Coarse training of the models. 4. 3. Fine training of
the models. 4.4. Functions used in graphic displays of the SOM. These functions
are specified by several parameters defined below.

Form and size of the SOM lattice. Let us start with the definition of the
lattice topology of the SOM array. It is most often selected as a rectangular plane,
called the sheet, with open edges. Other possible forms of the SOM lattice are
a cylinder and a toroid, where the lattice is closed cyclically along one or two
dimensions, respectively. The definition of the lattice topology is made within
the initializing function som lininit or som randinit, as exemplified soon. If
we want to create an SOM with rectangular plane topology, we give to the pa-
rameter shape the value ’sheet’. Otherwise the value ’cyl’ or ’toroid’ is
given to the shape parameter.The SOM Toolbox does not have any provisions
for dynamically growing or other special lattice forms.

The network structure, or the topological relation of the SOM nodes is another
structural feature, which is defined by the parameter lattice. The alternatives
in the SOM Toolbox for network structures are ’rect’ and ’hexa’. The for-
mer means a rectangular grid, and the latter a hexagonal grid, respectively.
Normally we prefer the hexagonal grid because of its better isotropy in graph-
ics, but sometimes (especially in the case of SOMs for strings of symbols) the
rectangular lattice is simpler for typographic reasons.

The number of nodes in the SOM array, and their division in the horizontal
and vertical directions is defined by the parameter msize, for which the value
[hor vert] is given. Here hor means the number of (horizontal) rows, and
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vert the number of (vertical) columns, respectively.

Neighborhood function. There are several options for the form of the
neighborhood function in the SOM Toolbox. They are selected by the parameter
neigh. The most common of them is the the Gaussian form, defined by the
value ’gaussian’ of the parameter neigh. Another value, mainly restricted to
the use of the batch training version of the SOM, is the ’bubble’, which defines
a neighborhood set of nodes around the winner, and has the constant value of
1 up to a certain radius from the winner, and zero outside it. However, in very
large problems, in which the computing time is critical, one may cut the flanks
of the Gaussian function at the mean radius; hence the name ’cutgauss’. In the
original documentation of the SOM Toolbox, the following definitions occur: if
Ud is the abbreviation for the squared radius from the winner, and if, for brevity,
we write radius(t) for the squared-radius parameter, then the definitions of the
neighborhoods are written in SOM Toolbox as

case ’bubble’, H = (Ud<=radius(t));

case ’gaussian’, H = exp(-Ud/(2*radius(t)));

case ’cutgauss’, H = exp(-Ud/(2*radius(t))) .* (Ud<=radius(t));

case ’ep’, H = (1-Ud/radius(t)) .* (Ud<=radius(t));

Other training parameters. The most essential feature of the SOM is the
value of its neighborhood radius as a function of the number of training cycles.
As already mentioned in the theoretical part, we prefer two training phases, the
coarse and the fine one, and the neighborhood function is defined differently
during each. In coarse training we want to achieve global ordering of the map as
quickly and surely as possible, whereas the exact values of the model vectors are
reached in the fine-training cycles. During the latter we usually keep the neigh-
borhood radius constant, and if the set of training inputs is the same during
each fine training cycle, the algorithm is expected to terminate in a finite (and
not too large) number of fine training cycles.

During coarse training, the (mean) radius of the neighborhood is defined by
the parameter radius coarse, and usually we define the initial value init and
the final value final, between which the radius decreases linearly with training
steps. These two values are given as the vector [initial final]. Also other
time functions of the neighborhood radius can be defined in the SOM Toolbox.

The number of training cycles during the coarse training phase is given by the
parameter trainlen coarse. Correspondingly, during the fine-training phase
we define the radius by the parameter radius fine = [final final], and the
number of cycles during the fine training phase is trainlen fine.
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An example. In the example of Sec.12, which is a typical one, we have

msize = [6 6];

lattice = ’hexa’;

neigh = ’gaussian’;

radius_coarse = [4 .5]; % [initial final]

trainlen_coarse = 50;

radius_fine = [.5 .5]; % [initial final]

trainlen_fine = 10;

Note that the radius of the Gaussian neighborhood function need not be an
integer, and .5 is a typical final value for small maps (and also the smallest value
in general). On the other hand, the length of the fine-training phase above seems
rather short, but it is usually followed by a few extra training phases associated
with the stopping rule of the algorithm, which will be introduced in forthcoming
examples.

The above parameter values can also be given explicitly numerically within
the training functions themselves, as we will see next.

Initialization of the SOM. The initialization of the SOM models is made
by the function som lininit or som randinit. The latter initializes the models
by random values. This kind of initialization may only have theoretical interest
in itself. The idea of using som randinit is that when using it, one can prove
that the self-organization of the SOM is possible starting with arbitrary initial
values. However, in practice, a much quicker computation of the SOM ensues
using som lininit, i.e., picking the initial values in a regular fashion from the
hyperplane spanned by the two largest principal components, as already ex-
plained in Subsec. 4.3.

A typical initialization command is

smI = som_lininit(X, ’msize’, [10 15], ’lattice’, ’hexa’, ...

’shape’, ’sheet’);

where X is the input data matrix, and the SOM array size is 10 by 15 nodes.
The parameters are here given directly in the command. This function returns
the initial values of the SOM matrix as the variable smI. It is a data type named
structure (see next paragraph).

MATLAB structs. A remark concerning the representation of matrices in
MATLAB functions should now be made. In the MATLAB at large, and in
some SOM Toolbox functions in particular, the matrix arrays are represented
as so-called structures, briefly called ”structs.” A MATLAB struct is an array
organization with named fields that can contain data of varying types and sizes.

For instance, you can create a new struct s1 like shown in the following
example:
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s1.a = 12.7;

s1.b = {’abc’, [4 5; 6 7]};

s1.c = ’Hello!’;

save(’newstruct.mat’, ’-struct’, ’s1’);

In the SOM Toolbox there is a file named codebook, which contains the
information about the SOM matrix M at the different phases of its computation.
After initialization, the matrix M is stored and returned as the struct smI, which
is not a mathematical matrix variable, but which can be readily converted into
the matrix form by the command M = smI.codebook, if we need the explicit
matrix form in computations. Similar structs are smC, which represents M after
coarse training, and sm, which stands for M after fine training, and they too
can be converted into mathematical matrix variables by the commands M =

smC.codebook and M = sm.codebook, respectively.
Except for the initialization and training functions, we do not discuss structs

in this book.

Training functions. Next we define the SOM Toolbox function
som batchtrain. This function, with various parameters, can be applied for both
coarse training and fine training. Below we have a typical set of commands for
initialization and training:

% Initialization:

smI = som_lininit(X, ’msize’, msize, ’lattice’, lattice, ...

’shape’, ’sheet’);

% Coarse training:

smC = som_batchtrain(smI, X, ’radius’, radius_coarse, ...

’trainlen’, trainlen_coarse, ’neigh’, neigh);

% Fine training:

sm = som_batchtrain(smC, X, ’radius’, radius_fine, ...

’trainlen’, trainlen_fine, ’neigh’, neigh);

In the SOM Toolbox there is also the function som seqtrain, which imple-
ments the original stepwise recursive algorithm discussed in Sec.4. This function
has only theoretical interest, since for practical computation the batch training
algorithm has many virtues over it: the batch algorithm does not involve any
learning-rate parameter, and it is quicker and more robust.

Winner search. The winner search in the SOM training algorithms is built
in the training functions themselves. However, we need a separate winner search
script in the calibration of the SOM, i.e., when testing what SOM model matches
best with a given input item.
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The MATLAB has been designed for a very effective handling of matrices,
and so we can find the best-matching nodes by a couple of command lines. If the
model vectors are denoted (in the usual mathematical notation) as mi, where i
runs linearly over the nodes (not yet regarding the two-dimensional SOM array,
which is not needed until in the graphics), and if x is the calibration (or input)
vector, then we have to find the minimum over the set of vectorial differences
{x − mi}. The locations of the minima are the same as the locations of the
minima of the squares of the differences, which we write:

||x||2 + ||mi||2 − 2(x ·mi) .

But in the winner search, x is the same for all differences and can be ignored.
Let now X be the matrix of all calibrating inputs ; if the calibration is made using
all of the columns of the input data matrix, then X is the data matrix itself.

In MATLAB we can perform many simultaneous computations very conve-
niently. Let M be the SOM matrix. The squares of the norms of all of the models
mi, denoted norms2 in the scripts in the sequel, are computed simultaneously
as the expression sum(M.*M,2), and so the index c of the winner model for each
calibration input X(u,:) is obtained by

M = sm.codebook;

norms2 = sum(M.*M,2);

for u = 1:size(X,1)

X1 = X(u,:)’;

Y = norms2 - 2*M*X1;

[C,c]= min(Y);

end

where the expression [C,c] defines both the value C of the minimum, and
its index c.

However, this piece of script becomes even simpler if we define the matrix
Norms:

Norms = norms2;

for u = 1:size(X,1)-1

Norms = [Norms norms2];

end

In other words, Norms is now a matrix in which the column vectors norms2
are repeated size(X,1) times. Then we obtain all of the winner indices c si-
multaneously by these two lines:

Y = Norms - 2*M*X’;

[C,c] = min(Y);

There are also SOMs in which the dot-product matching criterion is used. In
that case the whole winner search is even simpler and faster, because no norms2

need be computed:
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M = sm.codebook;

Y = M*X’;

[C,c] = max(Y);

.

Graphic representations of the SOM models. The SOM models mi,
being usually vectors, can be represented by the SOM graphics in many different
ways, e.g.:

1. In low-dimensional problems one can plot the model vectors referring to
the input space (cf. Secs. 6, 11 and 13).

2. One can display the components of the model vectors as graphic diagrams
such as bar diagrams, pie charts, etc.

3. If the vectorial models have a distinctive semantic meaning, such as the
name of a class, textual labeling of the nodes can be used (cf., e.g., Sec. 12).

4. If the number of classes to be represented by the models is small, one can
use shades of gray or pseudo-colors to paint those nodes (locations) of the SOM,
the models in which belong to particular classes. In this way, classified areas of
the SOM become clearly visible.

5. In a special case as discussed in Sec. 11, i.e., the self-organization of col-
ors, the nodes (locations) of the SOM array are directly painted by the color
represented by the models.

6. If, on the other hand, the SOM is used to represent histograms of items
falling in different classes (e.g. the mushroom example in Sec. 19), the numbers
of input items mapped into particular SOM locations are usually represented by
shades of gray.
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11 The QAM problem recomputed by the SOM Toolbox

Before we attack larger-scale problems, just for curiosity and for comparison we
carry out the computation of the 64 QAM by the SOM Toolbox functions.

Unfortunately, without rewriting the SOM Toolbox, we cannot mix the k-
means clustering and SOM algorithms easily. However, to try to reach a compro-
mise between topographic ordering and elimination of the border effects, we can
use the Gaussian neighborhood function, but select a small final radius for the
neighborhood function, say, 0.2, which reduces the border effects. Fig. 14 shows
the resulting Voronoi diagram. The computation on a 2 GHz computer took 0.6
seconds, and was carried out by the script

X = zeros(10000,2); % training input

for t = 1:10000

X(t,1) = floor(8*rand) + .1*randn - 3.5;

X(t,2) = floor(8*rand)+ .1*randn - 3.5;

end

smI = som_lininit(X, ’msize’, [8 8], ’lattice’, ’rect’, ...

’shape’, ’sheet’);

smR = som_batchtrain(smI, X, ’radius’, [4 .2], ’trainlen’, 20, ...

’neigh’, ’gaussian’);

sm = som_batchtrain(smR, X, ’radius’, [.2 .2], ’trainlen’, 3, ...

’neigh’, ’gaussian’);

M = sm.codebook;

figure(1);

voronoi(M(:,1),M(:,2))

Fig. 14. The Voronoi diagram of the 64QAM solved by the SOM Toolbox.
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12 The SOM of some metallic elements

Clustering of items according to their physical properties

Objective:

The attributes of the items (metallic elements) in this example are phys-
ical, macroscopic properties of materials. We want to see to what degree
the items are clustered on the basis of their observable common physical
properties.

12.1 Description of items on the basis of their measurable
properties

As mentioned in the introductory chapters of this book, the SOM has been
applied to a very large range of problems, many of which deal with very big data
bases. Unfortunately I cannot include extensive applications from the practice
in this book, but I hope that you will be able to move on to practice after
understanding how the SOM operates.

It is my purpose that you could first get some hands-on experience of fair-
sized cases and see in what way the SOM can illustrate and visualize data. I
have intentionally tried to pick up examples from different application areas with
different types of data. The preprocessing and preparation of the data to the SOM
algorithm is mostly different in the various cases, and I am starting from simple
and concrete problems, proceeding to cases in which the similarity relations
between the data items are more abstract. The majority of SOM applications
deals with variables with concrete, measurable attributes.

For the first clustering example we shall take a typical case in which the
items are described by their measurable properties. These properties constitute
the attributes of the metals, on the basis of which we intend to cluster the metals
in a way that is different from the classical systematics of the elements. The
results ensuing in this problem may be understandable to us, at least intuitively.

I have selected 17 metallic elements: Al, Sb, Ag, Ir, Cd, Co, Au, Cu, Pb,
Mg, Ni, Pd, Pt, Fe, Zn, Sn, and Bi. For these metals, all of the following 12
attribute values could be found from physical tables:

1. Density (kg/dm3) at 18◦C
2. Coefficient of thermal expansion x 106(per cent /C)
3. Compressibility x 106 (relative change/at)
4. Velocity of sound in it (m/s)
5. Modulus of elasticity (kp/cm2)
6. Thermal conductivity at 18◦C (kcal/m · h · C)
7. Specific heat (kcal/kg · c)
8. Melting point (C)
9. Fusion heat (kcal/kg)
10. Boiling point at 760 mmHg (C)
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11. Boiling heat (kg/kg)
12. Specific resistance (ohm ·mm2/m)

The first thing in a SOM script is to define the input matrix of the attributes.
Since this is still a problem of small dimensionality, we can write the input matrix
explicitly: the rows represent the above elements, and the columns represent the
above physical properties, respectively.

X = [2.7 23.8 1.34 5105 .7 187 .22 658 92.4 2450 2800 2.72

6.68 10.8 2.7 3400 .79 16 .051 630.5 38.9 1380 300 39.8

10.5 18.8 .99 2700 .8 357 .056 960.5 25 1930 520 1.58

22.42 6.59 .27 4900 5.2 51.5 .032 2454 28 4800 930 5.3

8.64 31.6 2.25 2300 .51 84 .08 320.5 13 767 240 7.25

8.8 12.6 .54 4720 2.08 60 .1 1489 67 3000 1550 6.8

19.3 14.3 .58 2080 .81 268 .031 1063 15.7 2710 420 2.21

8.92 16.2 .73 3900 1.2 338 .0928 1083 50 2360 1110 1.72

11.34 28.9 2.37 1320 .17 30 .03 327 5.9 1750 220 20.7

1.734 25.5 2.95 4600 .45 145 .25 650 46.5 1097 1350 4.3

8.9 12.9 .53 4970 2.03 53 .108 1450 63 3075 1480 7.35

12.16 11.04 .53 3000 1.15 60 .059 1555 36 2200 950 10.75

21.45 15.23 .36 2690 1.6 60 .032 1773 27 4300 600 10.5

7.86 12.3 .59 5100 2.2 50 .11 1530 66 2500 1520 9.9

7.14 17.1 1.69 3700 .43 97 .092 419.5 26.8 907 430 5.95

7.3 27 1.88 2600 .55 57 .05 231.9 14.2 2270 620 11.3

9.8 13.4 2.92 1800 .32 8.6 .029 271.3 14.1 1490 200 118];

Normalization of the variables. Because the physical entities have been
measured by different units and are thus given in different scales, we must nor-
malize them. This we do by a change of all scales, where each variable shall have
an identical minimum and maximum:

for i = 1:12

mi = min(X(:,i));

ma = max(X(:,i));

X(:,i) = (X(:,i)-mi)/(ma - mi);

end

Making the SOM. Now we are ready to move to the initialization and com-
puting of the SOM, which begins with the declaration of the parameters, and con-
tinues with the execution of the functions som lininit and som batchtrain:

msize = [6 6];

lattice = ’hexa’; % hexagonal lattice

neigh = ’gaussian’; % neighborhood function

radius_coarse = [4 .5]; % [initial final]

trainlen_coarse = 50; % cycles in coarse training

radius_fine = [.5 .5]; % [initial final]

trainlen_fine = 10; % cycles in fine training
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smI = som_lininit(X, ’msize’, msize, ’lattice’, lattice, ’shape’, ...

’sheet’);

smC = som_batchtrain(smI, X, ’radius’, radius_coarse, ’trainlen’, ...

trainlen_coarse, ’neigh’, neigh);

sm = som_batchtrain(smC, X, ’radius’, radius_fine, ’trainlen’, ...

trainlen_fine, ’neigh’, neigh);

The SOM has now been computed and expressed as the struct sm. Next we
show how it can be shown explicitly.

Plotting of the SOM array and its labeling. The plotting of the SOM
may take place in many different ways. In this example we first define a blank
hexagonal SOM graphic of a correct lattice size, the cells of which we have to
label by the due symbols of the elements. The blank hexagonal network is drawn
by the command

som_cplane(’hexa’,msize, ’none’) .

The symbols of the elements are then written into the due hexagons. They are
defined in the following way. We first define two strings labels1 and labels2,
which define the two letters that define the elements:

labels1 = ’ASAICCACPMNPPFZSB’;

labels2 = ’lbgrdouubgidtenni’;

The first letter of the element numbered by the parameter u, u = 1 ...

17, is the u:th element in the string labels1; the second letter is the u:th el-
ement in the string labels2, respectively. For instance, ’Al’ = [labels1(1)

labels2(1)], and ’Bi’ = [labels1(17) labels2(17)].
But first we have to calibrate the SOM nodes using the original input data

X, for which we have to find the winner nodes. As described in Sec.10, these are
found by the piece of script

M = sm.codebook;

norms2 = sum(M.*M,2);

for u=1:17

X1 = X(u,:)’;

Y = norms2 - 2*M*X1;

[C,c] = min(Y);

(continues)

The locations on the SOM display, into which the symbols of the elements
have to be written, are defined by the horizontal rows ch and vertical columns
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cv of the SOM array. However, in the text command used for labeling the
cells, ch takes the role of the x coordinate and cv the role of the y coordinate,
respectively. These coordinates are resolved as

ch = mod(c-1,6) + 1;

cv = floor((c-1)/6) + 1;

(continues)

Now we can write the symbols automatically into their correct places onto the
SOM, defined by the coordinates ch and cv, by the following script. Because
the even and odd rows of the hexagonal SOM are mutually displaced in the
horizontal direction, we have to use the shift1 parameter for the horizontal
shift to position the texts correctly. However, since there were a few collisions of
different labels in the same cells, we have to use the shift2 parameter in these
locations to position the colliding symbols correctly also in the vertical positions.
The result is shown in Fig. 15.

if mod(cv,2) == 1

shift1 = -.15;

else

shift1 = .35;

end

if u==9 || u==11

shift2 = -.3;

else if u==5 || u==14

shift2 = .3;

else

shift2 = 0;

end

text(ch+shift1,cv+shift2,[labels1(u) ...

labels2(u)], ’FontSize’,15);

end

What we may need further are the commands to print and store the figure.

Discussion. A surprising result in this example is that we can find a tight
ferromagnetic cluster of Ni, Co and Fe at the top, although we did not consider
the magnetic susceptibility or any other magnetic properties of the metals. This
is obviously due to some strong correlation between the physical properties of
the ferromagnetic metals.

The series of noble metals Pt, Pd, Au and Ag is also discernible, and if
the chemical reactivity properties are not taken into account (and we had no
attributes of them), copper is physically close to the noble metals. The physical
properties of the rest of the metals also seem to be related correctly. Note that
Sn, Pb, Sb, and Bi are used in low-melting-point alloys.
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Fig. 15. The SOM of some metallic elements, the properties of which may be familiar
to us. One can see the grouping of metals according to their physical properties.

What is the rationale of using the SOM for this kind of analysis and showing
this kind of a figure? Certainly it does not add much to our knowledge, com-
pared, e.g., to the Mendelejev table and the well-known physics of metals, but
it may give us a hint of how the SOM may in general discover new, interesting
and unexpected phenomena from experimental data. The SOM comes in handy
especially in the preliminary analysis of data.

Naturally this same analysis could be carried out for a wider range of ele-
ments, and more complete tables of physical properties are nowadays available.
Nonetheless we wanted to keep this example, as well as most of the examples
taken to this book simple, in order that the program structures would be more
transparent and easier to follow, and to demonstrate that even rather small
SOMs, with a relatively small data set, may demonstrate new dimensions in
data analysis.
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13 Self organization of color vectors

Ordered 2D projection of random 3D color vectors

Objective:

In this second example we demonstrate how we can map (project) 3D
color vectors onto a 2D plane in an orderly fashion by the SOM algo-
rithm.The color vectors are mixtures of red, green and blue colors in
which the color components vary. These colors become topographically
ordered on a 2D plane with respect to both intensity and hue to produce
the so-called chromaticity diagram that occurs in human color vision.

13.1 Different nature of items and their attributes

Although we shall be dealing with physical attributes in this example, too,
nonetheless the nature of the problem is completely different from the first case.
First of all we do not have a finite set of concrete objects like the metals in the
first example; each input item is only a color shade, and there exists an indefinite
number of them in practice. On the other hand, each shade is represented only
by three attributes, namely, the intensities of the three components of the basic
colors, which are red, green, and blue. Nonetheless, although the mathematical
representation of the input items is different from that in the previous example,
the self-organization of the colors occurs formally in a similar way.

13.2 Color vectors

A three-dimensional RGB (red-green-blue) color vector is a digital code for any
mixtures of shades and intensities of visible colors. In digital representation, the
intensities of the three basic color components (R, G, B) are given as real scalars
in the range [0, 1].

Our aim is to show that if the input data represent quite random color
vectors, the SOM algorithm is able to produce a representation of colors such
that their distribution remains the same, but the colors become spatially ordered
on the SOM array such that both the hue and the intensity in neighboring
models change gradually; it is said that a topographic order of the colors has
ensued. Because we can understand the relations between colors intuitively, we
use this color example as an abstract model for more general topographic self
organization.

With a proper scaling of the input vectors, an SOM can be produced that
represents the generally known chromaticity diagram or CIE diagram, where the
hue and the saturation of color become represented in polar coordinates like in
the human vision.
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Consider a MATLAB variable C(a,b,c), which represents a three-dimensional
table. The parameters a and b are the indices of a row and a column in the ta-
ble, and c is a vector that has three elements: its first element represents the
intensity of pure red, the second element represents the intensity of pure green,
and the third component is the intensity of pure blue, respectively.

Let us exemplify the digital coloring by the following concrete example. The
MATLAB function image(C) defines the coloring of the square (a,b) by that
pure color component, the intensity of which is defined by the vector c. If one
needs mixed colors, the same location (a,b) must be painted separately by the
intensities of the elements of c; in other words, the mixed colors are defined
digitally by superimposing basic color components.

However, unlike in wet painting, where the mixture of blue and yellow pro-
duces the green color, in digital color definition the mixture of red and green
produces the yellow color. Therefore yellow in the area (a,b) is produced by
the combination of the functions C(a,b,1) and C(a,b,2). Consider the follow-
ing MATLAB commands:

C = zeros(1,4,3); % 1 by 4 table, three color components

C(1,1,1) = 1; % leftmost (1,1) area is pure red C(:,:,1)

C(1,2,2) = 1; % second (1,2) area is pure green C(:,:,2)

C(1,3,3) = 1; % third (1,3) area is pure blue C(:,:,3)

C(1,4,1) = 1; C(1,4,2) = 1; % fourth area is painted pure yellow:

% combination of pure red = C(:,:,1)

% and pure green = C(:,:,2)

image(C) % painting

These commands produce the color picture in Fig. 16.

Fig. 16. Coloring example.

Another picture, in which a 25 by 25 array is colored by random colors, is
shown in Fig. 17.
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Fig. 17. Coloring of a 25 by 25 array by random color vectors.

13.3 The SOM script for the self organization of colors

In this subsection we initialize the SOM by the function som lininit,
and continue with the training function som batchtrain, which con-
structs the SOM of color vectors.

As the input data we use 10’000 random color vectors, which constitute the
10000 by 3 input data matrix X. The SOM algorithm computes the data matrix
M, which is a 625 by 3 matrix. It is to be denoted that in the SOM algorithm, for
mathematical reasons, all of the model vectors are concatenated into a vertical
array that has as many rows as there are nodes in the SOM array. It is not until
we display the SOM array that we reshape the vertical array as a rectangular
array, in this case 25 by 25.

Training parameters. The definition of the training parameters of the SOM
is made first. We may decide to use a square SOM array (lattice) of the size 25 by
25 nodes, which is defined by the vector msize =[25 25]. In this simple example
we define the SOM array as rectangular, lattice = ’rect’. We may prefer to
use the Gaussian neighborhood function. Its definition ’gaussian’ follows the
’neigh’ parameter name in the function som batchtrain defined below. Other
parameters are the average radius of the neighborhood function, which decreases
linearly with the coarse training cycles. In this self-organization example we have
found it proper to use the initial value of 10 and the final value of 7, and during
the fine training cycles let the radius decrease from 7 to 5, respectively. In other
words, we did not make use of any stopping rule. The number of training cycles
in both coarse and fine training shall tentatively be 50.
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msize = [25 25];

lattice = ’rect’;

radius_coarse = [10 7];

radius_fine = [7 5];

trainlen_coarse = 50;

trainlen_fine = 50;

Training functions. Next we define the SOMToolbox functions som lininit

and som batchtrain. The former carries out the linear initialization of the SOM.
The som batchtrain function is then applied twice: first for coarse training, and
then for fine training. The last parameters ’shape’,’sheet’ in som lininit

mean that the topology of the SOM array is a plane.

For the training inputs X we use random values of the color vectors: X =

rand(10000,3).
The following commands, which form the MATLAB SOM Toolbox script,

may now be self-explanatory. These instructions form the complete script or
program which computes the SOM array of self-organized colors.

X = rand(10000,3); % random input (training) vectors to the SOM

smI = som_lininit(X,’msize’,msize,’lattice’,lattice,’shape’, ...

’sheet’);

smC = som_batchtrain(smI,X,’radius’,radius_coarse,’trainlen’, ...

trainlen_coarse, ’neigh’,’gaussian’);

sm = som_batchtrain(smC,X,’radius’,radius_fine,’trainlen’, ...

trainlen_fine, ’neigh’,’gaussian’);

Display of the SOM. This time we do not need the SOM graphic function,
since we are not calibrating the SOM array in the usual way. The matrix values
M represent color shades, which can displayed directly by the image function.
The result is shown in Fig. 18.

M = sm.codebook;

C = zeros(25,25,3);

for i = 1:25

for j = 1:25

p = 25*(i-1) + j;

C(i,j,1) = M(p,1); C(i,j,2) = M(p,2); C(i,j,3) = M(p,3);

end

end

image(C)
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Fig. 18. Self organization of random colors in the SOM.

Computation of the chromaticity diagram. Another experiment, in
which the square root of the previous color vectors was used as input data matrix
X, is shown in Fig. 19.

Fig. 19 resembles the chromaticity diagram, which is a representation of in-
tensity and hue of colors in two-dimensional polar coordinates. This diagram,
also called the CIE diagram, is experimentally verified to exist in the human
brain, in the visual cortex.

Like in the CIE diagram of colors, the pale area in Fig. 19 is also in the middle,
and we have an ordered representation of intensity and hue of and mixed colors.
There is no black area in this illustration like in Fig. 18. Obviously the square
root emphasizes light colors to produce this result.

The square root resembles the logarithm, and it is known that in the bio-
logical sensory systems the subjectively experienced signal intensities are often
logarithmically related. This might explain why Fig. 19 resembles the experi-
mentally constructed CIE diagram. However, we cannot use logarithmic scales
in digital signal processing, because small signals are transformed into very large
negative logarithmic values.

Discussion. This example showed how a three-dimensional color solid was
projected onto a two-dimensional plane. The plot includes areas where also the
intensities of colors vary: for example, in Fig. 8 there is a pale area in the upper
left corner, as well as a dark area on the right side. In the former, all of the
numerical values of color components are close to unity, while in the latter, the
numerical values of all of the components of the color vectors are low.
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Fig. 19. Another self organization of random colors by the SOM, when the square root
of the color vectors was used as input data to the SOM. This image resembles the
chromaticity diagram or the CIE color diagram of the human color vision.

The somewhat more realistic color diagram in Fig. 19 was constructed using
color vectors with an enhanced distribution of whiter shades.

Certainly this projection is nonlinear. One may imagine that the nodes of the
SOM array form a flexible two-dimensional network that is trying to approximate
the three-dimensional color solid. Like the fractal surfaces, also called space-
filling surfaces, this ”flexible” SOM network behaves somewhat in the same way.
It is trying to approximate the higher-dimensional structures, but is succeeding
only partly. The SOM network is more or less ”stiff,” depending on the width of
the neighborhood function, and its ability of approximating higher-dimensional
structures depends on the choice of this neighborhood function. In this example
the final width of the neighborhood function was equal to 5, which is a rather
large value compared with what is normally used. On the other hand, with this
value the color maps shown in Figs.18 and Fig. 19 have become globally ordered,
i. e., they do not contain partially disorganized areas.

One may also understand that while the SOM network is a projection surface
onto which the higher-dimensional data distribution is projected nonlinearly, this
projection surface, in the two-dimensional display, is straightened up.

This example also shows that although the SOM projection is able to illus-
trate higher-dimensional distributions, it is not always unique. Especially de-
pending on the choice of the neighborhood function, but also on the scaling of
the input data and different random-number sequences, the detailed projections
may vary from one mapping to another. The topographic relations between the
items, however, tend to be preserved.
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14 The SOM of the present financial status of 50
countries or unions

Ordering of items with respect to a set of statistical indicators

Objective:

We try to construct an SOM that represents and compares the finan-
cial status of selected countries, based on data that are available in the
Internet for the present.

We had available in the Internet several financial indicators for many coun-
tries or unions from the turn of the year 2013/2014, as well as from August,
2014. Based on the data for the 50 richest of them, we now construct SOMs that
describe the clustering of these countries. First, however, it will be necessary to
emphasize a few facts.

1. When compared with the ”welfare map” presented in Fig. 1, the main
difference is that the ”welfare map” was mainly based on nonfinancial indica-
tors. There were only few financial indicators, such as the gross national product
(GNP) per capita, whereas the majority of the 39 indicators represented health
services such as the number of doctors per capita, as well as educational services,
all of which correlated strongly with GNP and were reasonably stable with time.
Contrary to that, the present example is completely based on financial indicators,
among which there are strongly interrelated variables such as the rate of inter-
est and inflation, but there is also a different time behavior between them. For
instance, if the inflation is high, the central banks are forced to raise the rate of
interest, but its effect is delayed. Also, since this occurs at different times in dif-
ferent countries, the countries may be in a different phase of periodic economical
development, and actually their indicators could then not be compared directly.

2. On the other hand, if the objective had been to compare the economical
status of the countries, one should have taken into account the trade balance, the
volumes of domestic and international markets etc. Unfortunately these figures
are not easy to obtain without hard work, and this context is not quite suitable
for such studies. We decided to be content with the information that was avail-
able in general sources.

3. One also has to emphasize the fact that the scale of the SOM display is not
homogeneous, and one usually cannot plot any coordinate axes onto it. Therefore,
sometimes the projections of the countries seem to make big jumps, but it does
not mean that the corresponding true vectorial differences of their inputs were
that big. The quantitative relations in the SOM vectors can be visualized with the
aid of some auxiliary graphic aids such as the U matrix introduced in Sec. 15.
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The raw data. In this example, the following countries and unions were
included. Below are their codes used in the maps:

ARE United Arab Emirates IRL Ireland
ARG Argentina IRN Iran
AUS Australia IRQ Iraq
AUT Austria ISR Israel
BEL Belgium ITA Italy
BRA Brazil JPN Japan
CAF Central African Rep. KOR Korea, Rep.
CAN Canada MEX Mexico
CHE Switzerland MYS Malaysia
CHL Chile NGA Nigeria
CHN China NLD Netherlands
COL Colombia NOR Norway
CSK Czechoslovakia OAN Taiwan
DEU Germany PAK Pakistan
DNK Denmark PHL Philippines
EGY Egypt. Arab Repub. POL Poland
ESP Spain PRT Portugal
EUR European Union RUS Russia
FIN Finland SAU Saudi Arabia
FRA France SGP Singapore
GBR United Kingdom SWE Sweden
GRC Greece THA Thailand
HKG Hong Kong TUR Turkey
IDN Indonesia USA United States
IND India VEN Venezuela

tiny .

The original data obtained from the Internet for the various countries con-
sisted of the following indicators: gross national product in millions of dollars
(GNP), rate of interest (ROI), inflation (INFL), unemployment (UNEMP), debts
in relation to (DEBTS), liquid deposits in relation to GNP (DEPOS), and pop-
ulation (POP). They are listed in the table below:

Country GNP ROI INFL UNEMP DEBTS DEPOS POP
USA 16800 .25 2.00 6.20 101.53 -2.30 317.30
EUR 12750 .15 0.30 11.50 92.60 2.40 332.88
CHN 9240 6.00 2.30 4.10 22.40 2.00 1354.04
JPN 5960 0.00 3.40 3.80 227.20 0.70 127.22
DEU 3635 0.15 0.80 4.90 78.40 7.50 81.84
FRA 2735 0.15 0.50 10.10 91.80 -1.30 65.28
GBR 2522 0.50 1.60 6.40 90.60 -4.40 63.26
BRA 2246 11.00 6.50 4.90 56.80 -3.66 193.94
RUS 2097 8.00 7.50 4.90 13.41 1.56 143.35
ITA 2071 0.15 -0.10 12.60 132.60 1.00 9.39
IND 1877 8.00 7.96 5.20 67.72 -1.70 1233.00
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Country GNP ROI INFL UNEMP DEBTS DEPOS POP
CAN 1825 1.00 2.10 7.00 89.10 -3.20 35.06
AUS 1561 2.50 3.00 6.40 20.48 -2.90 22.79
ESP 1358 0.15 -0.50 24.47 93.90 0.80 46.20
KOR 1305 2.25 1.60 3.40 33.80 5.80 50.00
MEX 1261 3.00 4.07 5.47 36.90 -1.80 116.90
IDN 868 7.50 4.53 5.70 26.11 -3.30 245.90
TUR 820 8.25 9.32 8.80 35.85 -7.90 75.62
NLD 800 0.15 0.89 8.20 73.50 10.40 16.73
SAU 745 2.00 2.60 5.50 2.68 18.00 29.55
CHE 651 0.00 0.00 2.90 35.40 13.50 7.95
ARG 612 15.61 10.90 7.50 45.60 -0.90 41.28
SWE 558 0.25 0.00 7.10 40.60 6.20 9.48
NGA 523 12.00 8.30 23.90 11.00 7.10 166.21
POL 518 2.50 -0.20 11.90 57.00 -1.30 38.53
NOR 513 1.50 2.20 3.30 29. 11.00 4.99
BEL 508 0.15 0.00 8.50 101.50 -1.60 11.08
OAN 489 1.88 1.75 3.95 40.98 11.73 23.31
VEN 438 16.56 60.90 7.10 49.80 7.10 29.72
AUT 416 0.15 1.80 7.30 74.50 2.70 8.44
THA 387 2.00 2.16 1.15 45.70 -0.70 66.79
ARE 384 1.00 2.30 4.20 16.70 14.91 9.21
COL 378 4.50 2.89 9.30 31.80 -3.40 47.10
IRN 369 14.60 10.70 -0.78 10.30 8.12 75.10
CAF 351 5.75 6.30 25.50 46.10 -5.80 52.20
DNK 331 0.20 0.80 4.10 44.50 7.30 5.57
MYS 312 3.25 3.20 2.80 54.80 4.70 29.20
SGP 298 0.08 1.20 2.00 105.50 18.00 5.31
ISR 291 0.25 0.30 6.20 67.40 2.47 7.91
CHL 277 3.50 4.50 6.50 12.80 -3.40 17.40
HKG 274 0.50 4.00 3.30 33.84 2.10 7.22
EGY 272 9.25 10.61 12.30 87.10 -2.40 83.66
PHL 272 3.75 4.90 7.00 49.20 3.50 95.80
FIN 257 0.15 0.80 7.00 57.00 -1.10 5.43
GRC 242 0.15 -0.70 27.20 175.10 0.70 11.29
PAK 237 10.00 7.88 6.00 63.30 -1.10 178.91
IRQ 223 2.30 15.10 -5.55 31.30 6.71 32.58
PRT 220 0.15 -0.90 13.90 129.00 0.50 10.54
IRL 218 0.15 0.30 11.50 123.70 6.60 4.588
CSK 198 0.05 0.50 7.40 46.04 -1.40 10.52
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The indicators used in the computation of the SOM. We shall now
denote the seven original raw indicators by X(i,j), where i is the row denoting
the country, and j is the number of the column where the indicator is written.

A more insightful display is obtained, however, if the following six relative
indicators, denoted V(:,j), are used in the computation of the SOM:

1. Gross national product(GNP) per capita.
2. Rate of interest (in percentages)
3. Inflation per year (in percentages).
4. Unemployment, (in percentages)
5. Debts, in relation to the GNP.
6. Deposit accounts, in relation to the GNP.

These six indicators are first computed from the raw data:

V = zeros(50,6);

V(:,1) = X(:,1)./X(:,7);

for j = 2:6

V(:,j) = X(:,j);

end

Equalizing the scales of the variables. In attacking a multivariate case
like this, the first problem is usually a different scale of different indicators; they
may be measured using different units. The first task in rescaling is to choose
dimensionless scales, in which the extrema for each variable are identical. In
other words, take, for instance, the unemployment, which is expressed in per-
centages. Let this variable, for the different countries i, be named V (i, 4). Since
the training of the SOM is based on the inspection of differences of vectors, it
does not matter where we put the origin of each variable, and it can be the same
for all countries. The new value of V 1(i, 4) is first expressed as a dimensionless
variable

V 1(i, 4) = (V (i, 4)−minc{Vc})/(maxc{Vc} −minc{Vc}) .

This renormalization is often sufficient as such.

Weighting of the variables. However, especially when one is analyzing
statistics associated with human behavior, such as political or economic relations,
the straightforward equalization of the indicator values may not be sufficient. For
instance, in the appraisal of land value as made by Carlson [7], he had to use
experimentally determined weights for the different indicators that varied as
much as by one order of magnitude, in order to get realistically-looking SOMs.

In the present problem it was found necessary to put a bit higher weight on
the gross national product (GNP) per capita, namely, 2, as well as on the debts
in percentage of the GNP. The latter weight was equal to 3. One might ask
how I ended up with these values. Intuitively it was clear that these indicators
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are more important than the others, but the exact values were decided after
a few preliminary experiments, after seeing how the countries were located on
the SOM relative to each other. Especially when looking at the U matrix, these
choices seemed to result in the most continuous distributions of the components
and best contrasts in the U matrix.

The first display relates to data collected in August, 2014. The script con-
tinues with the equalization and weighting of the six SOM indicators:

for j = 1:6

mi = min(V(:,j));

ma = max(V(:,j));

V(:,j) = (V(:,j)-mi)/(ma - mi);

end

V(:,1) = 2*V(:,1);

V(:,5) = 3*V(:,5);

The script for the construction of the SOM is otherwise almost similar to that
used in the previous examples. The following specifications of the parameters
have to be mentioned:

msize = [17 17];

lattice = ’hexa’;

neigh = ’gaussian’;

radius_coarse = [7 1]; % neighborhood radius, coarse [initial final]

trainlen_coarse = 100; % cycles in coarse training

radius_fine = [1 1]; % neighborhood radius, fine [initial final]

trainlen_fine = 50; % cycles in fine training

The training took place in the standard way:

smI = som_lininit(V, ’msize’, msize, ’lattice’, lattice, ’shape’, ...

’sheet’);

smC = som_batchtrain(smI, V, ’radius’, radius_coarse, ’trainlen’, ...

trainlen_coarse, ’neigh’, neigh);

sm = som_batchtrain(smC, V, ’radius’, radius_fine, ’trainlen’, ...

trainlen_fine, ’neigh’, neigh);

Plotting of the SOM of August 2014. In the same way as in the metal
example, we use the blank hexagonal SOM graphic, the cells of which we label
by the codes of the countries. Since there is no big difference in computing times,
from now on we use the component-form definition of V to compute the winners.
The horizontal and vertical coordinates ch,cv of the labels are determined and
then the texts are written into these locations from the strings labels1 and
labels2. Just for a change, we take the first two letters of the country code
from labels1 and the third letter from labels2.
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labels1 = ’USEUCHJPDEFRGBBRRUITINCAAUESKOMEIDTUNLSACHARSW ...

NGPONOBEOAVEAUTHARCOIRZADNMYSGISCHHKEGPHFIGRPACSIR ...

POIRCS’;

labels2 = ’ARNNUARASADNSPRXNRDUEGEALRLNNTAELNFKSPRLGYLNCKKQRLK’;

som_cplane(’hexa’,msize, ’none’)

M = sm.codebook;

norms2 = sum(M.*M,2);

for u = 1:50

V1 = V(u,:)’;

Y = norms2 - 2*M*V1;

[C,c] = min(Y);

ch = mod(c-1,17) + 1;

cv = floor((c-1)/17) + 1;

if mod(cv,2)==1

shift1 = -.4;

else

shift1 = .1;

end

text(ch+shift1,cv,[labels1(2*u-1) labels1(2*u) ...

labels2(u)],

’FontSize’,8);

end

filename = ’financemap_new’;

print(’-dpng’, [filename ’.png’]);

save(filename, ’sm’);

Fig. 20 represents the projections of the countries as of August, 2014 on the
SOM.

Plotting of the SOM at the turn of the year 2013/14. I had copied the
corresponding data for the same countries from the turn of the year 2013/2014,
i.e., eight months earlier; now these data were no longer available in the Internet.
They had been stored in my computer as save(filename, ’sm’. Another SOM,
using parameters that were identical with those in making Fig. 20, was computed
for the older input data and is shown in Fig. 21.

V = zeros(50,6);

for i=1:50

filename = ’financemap_new’;

load(filename, ’sm’);

end

In order to guarantee that the SOM represented the same local optimum that
materialized in Fig. 20, I initialized the SOM with the sm struct obtained in
the previous example. Let this representation of the SOM be stored as the file
SOM August2014. The fine tuning took place using 50 cycles of som batchtrain
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Fig. 20. The SOM of the richest 50 countries in August 2014. The data were taken
from the Internet from generally available statistics, which are updated several times
in a year, but they did not contain important financial indicators such as the volumes
of the domestic and international markets, the trade balance etc., which would have
changed the relative position of many countries.

with the value of radius = [1 1]. Now the script for the computation of the
SOM from the turn of the year 2013/14 reads

filename = ’SOM_August2014’; % data used for initialization

load([filename ’sm’])

sm = som_batchtrain(sm, V, ’radius’, [1 1], ’trainlen’, 50, ...

’neigh’, neigh);

Fig. 21 shows the older map. The SOM display was made in the same way
as before.

.

Discussion. One cannot expect that the ”Welfare map” shown in Fig. 1
and the financial maps show in Fig. 20 and Fig. 21 would be similar. First of
all, they represent quite different statistics; Fig. 1, in addition to a few financial
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Fig. 21. The SOM of the richest 50 countries at the turn of the year 2013/14.

indicators, was strongly based on educational and health care data, which were
completely missing from the ”financial” maps. Second, the data stemmed from
very different eras, and especially in the year 2014 there have been many kinds
of severe political and financial crises, some of which have not been settled yet.
Third, the collection of countries in these examples was different.
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15 Using shades of gray to indicate the clustering of
models on the SOM

Introduction of the U matrix

Objective:

In the maps shown in Fig. 20 and Fig. 21 we do not yet see any borders
between the clusters of countries. However, the vectorial distances of the
neighboring models, if we can make use of them, tell the clustering ten-
dency of the models. A graphic display based on these distances, called
the U matrix, is explained in this section.

The clustering tendency of the data, or the models to describe them, can
be shown graphically based on the magnitudes of vectorial distances between
neighboring models in the map, as shown in Fig. 22 below. In it, the number of
hexagonal cells has first been increased from 18 by 17 to 35 by 33, in order to
create blank interstitial cells that can be colored by shades of gray or by pseudo-
colors to emphasize the cluster borders. This creation of the interstitial cells is
made automatically, when the instructions defined below are executed.

The U matrix. A graphic display called the U matrix has been developed by
Ultsch [87], as well as Kraaijveld et al. [47], to illustrate the degree of clustering
tendency on the SOM. In the basic method, interstitial (e.g. hexagonal in the
present example) cells are added between the original SOM cells in the display.
So, if we have an SOM array of 18 by 17 cells, after addition of the new cells
the array size becomes 35 by 33. Notice, however, that the extra cells are not
involved in the SOM algorithm, only the original 18 by 17 cells were trained.

The average (smoothed) distances between the nearest SOM models are rep-
resented by light colors for small mean differences, and darker colors for larger
mean differences. A ”cluster landscape,” formed over the SOM, then visualizes
the degree of classification. The groundwork for the U matrix is generated by
the instructions

colormapigray = ones(64,3) - colormap(’gray’);

colormap(colormapigray);

msize = [18 17];

Um = som_umat(sm);

som_cplane(’hexaU’, sm.topol.msize, Um(:));

In this case, we need not draw the blank SOM groundwork by the instruction
som cplane(’hexa’,msize, ’none’) as for Figs. 20 and 21. The example with
the countries in August 2014 will now be represented together with the U-matrix
”landscape” in Fig. 22. It shows darker ”ravines” between the clusters.
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Annotation of the SOM nodes. After that, the country acronyms are
written on it by the text instruction. The complete map is shown in Fig. 22.

Fig. 22. The SOM, with the U matrix, of the financial status of 50 countries

A particular remark is due here. Notice that there are plenty of unlabeled
areas in the SOM. During training, when the model vectors had not yet reached
their final values, the ”winner nodes” for certain countries were located in com-
pletely different places than finally; nonetheless the models at these nodes gath-
ered memory traces during training, too. Thus, these nodes have learned more
or less wrong and even random values during the coarse training, with the result
that the vectorial differences of the models in those places are large. So the SOM
with unique items mapped on it and having plenty of blank space between them
is not particularly suitable for the demonstration of the U matrix, although some
interesting details can be found in it.
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16 Using binary attributes as input data to the SOM

Clustering of discrete items based on logic statements

Objective:

In this section we construct an SOM for items that are described by
binary, symbolic attributes, resulting from simple logic statements.

Clustering is a rather common task in data analysis. It is sometimes based
on the verification of a set of properties that the items have. Most often the
properties (attributes, descriptors, indicators, or other similar qualities) are real-
valued numerical arguments resulting in statistical studies or scientific experi-
ments. However, in this very simple case example we use binary attributes for
the description of the items. A binary attribute represents a discrete and dis-
tinct property that the object X has or does not have, and here it is given in a
statement:: e.g., the statement ” X has hair” has a truth value that is either 1
or 0. The similarity of two items is defined by the number of truth values (0 or
1) that are identical in the same statements about the two items.

However, when we use the SOM for the clustering of the items, we construct
adaptive models for the items, i.e., for the sets of their attributes. But the models
consist of continuous-valued variables: how do they then comply with the binary
attributes? The answer is that in the algorithm we only approximate binary
attributes by continuous-valued model parameters: both the attributes and the
models are treated as real vectors, and in their matching, the comparison for
similarity is still made by computing the vectorial differences between the sets
of binary attributes and the elements of the model vectors.

We continue with a very simple example, a toy problem, which has been
presented in [39]; this example has been slightly revised here. In it, 13 animals
are presented by 11 binary attributes with the values 1 and 0, respectively. The
input data are given as a binary data matrix X(animal, attribute):

X = [1 0 0 1 0 0 0 0 0 1 0

1 0 0 1 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 1 1

1 0 0 1 0 0 0 1 0 1 0

0 1 0 1 0 0 0 1 0 1 0

0 1 0 0 1 0 0 1 0 0 0

0 1 0 0 1 0 0 0 1 0 0

0 1 0 0 1 0 1 1 1 0 0

1 0 0 0 1 0 0 1 0 0 0

0 0 1 0 1 0 0 1 1 0 0

0 0 1 0 1 0 1 1 1 0 0

0 0 1 0 1 1 1 0 1 0 0

0 0 1 0 1 1 0 0 0 0 0]
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The rows of X represent the following 13 animals :

{dove, hen, duck, hawk, eagle, fox, dog, wolf, cat,
tiger, lion, horse, cow},
and the binary values on the columns of X correspond to the truth values of

the statements, respectively:

{is small, is medium, is big, has 2 legs, has 4 legs,
has hooves, has mane, likes to hunt, likes to run,
likes to fly, likes to swim}.
Loading of the data matrix. Let us next assume that we had already

prepared the data matrix X and saved it by the filename ’animaldata’. In
saving, we have also defined the name of the data matrix to be X. The data are
loaded by the instructions

filename = ’animaldata’;

load (filename, X)

We do not have to define the dimensions of X, because they are automatically
defined in the loading instruction.

Initialization and training of the SOM. Contrary to what we made in
the first example, we shall now try to get along with a single training phase.
First we use the linear initialization som linit. After that we apply the batch
training function som batchtrain for 50 cycles. This time, for a change, we write
the explicit parameter values directly into the instructions. A hexagonal lattice
with the parameter value ’hexa’ is chosen. The parameter ’shape’ below shall
again have the value ’sheet’.

smI = som_lininit(X, ’msize’, [7 7] , ’lattice’, ’hexa’, ...

’shape’, ’sheet’);

sm = som_batchtrain(smI, X, ’radius’, [3 1], ’trainlen’, ...

50, ’neigh’, ’gaussian’);

M = sm.codebook;

Calibration of the SOM nodes. The next task is to label those nodes of
the SOM array that correspond to the various animals. What we again have to
do first is to locate the winner nodes for each of the row vectors of the data
matrix X that correspond to the animals:

norms2 = sum(M.*M,2);

for u = 1:13

X1 = X(u,:)’;

Y = norms2 - 2*M*X1;

[C,c] = min(Y);

end
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When we plot the SOM, we again first draw the blank hexagonal array:

som_cplane(’hexa’, [7 7], ’none’);

After that we automate the labeling like in the example of Sec. 12. The
maximum number of letters in a name is five, so we need the following five
strings of symbols to define the words (you can read the names from top to
bottom from these five strings, e.g., the first name is L1(1) L2(1) L3(1) L4(1)

L5(1) = ’dove ’ :

L1 = ’dhdhefdwctlhc’;

L2 = ’oeuaaoooaiioo’;

L3 = ’vncwgxgltgorw’;

L4 = ’e kkl f ens ’;

L5 = ’ e r e ’;

The labeling continues by determination of the row and column coordinates
of the winners:

ch = mod(c-1,7) + 1;

cv = floor((c-1)/7) + 1;

In labeling, the offset of the even rows with respects of the odd rows must
be taken into account by using the shift parameter:

if mod(cv+1,2)== 0

shift = -.2;

else

shift = .3;

end

text(ch+shift,cv, [L1(u) L2(u) L3(u) L4(u) L5(u)], ...

’FontSize’,10)

end

The computed SOM is shown in Fig. 23. The U matrix for the binary-
attribute example is shown in Fig. 24.
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Fig. 23. The SOM of 13 animals.

Fig. 24. The U matrix for the 13 animals.
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17 Ordering of items by their functional value

Mapping of footware according to their distinctive features

Objective:

The similarities of items can also be based on their functional values in
use. We exemplify this by a collection of different footware.

In this example we want to order 20 pieces of footware, not according to
their visual properties, but by their purpose and functional value. The items are
shown in Fig. 25.

Fig. 25. Collection of footware

Top row:

1. Baby boy’s shoe. 2. Dress shoe. 3. Roman soldier’s sandal. 4.Dutch wooden
sandal (clomp). 5. Japanese wooden sandal (geta).

Second row:

6. Baby girls shoe. 7. Fashion shoe. 8. Boot for rough terrain. 9. Rubber over-
shoe. 10. Rubber boot.

Third row:

11. Ladies’ fashion shoe. 12. Men’s ankle boot. 13. Men’s sporting sandal.
14. Ball player’s shoe. 15. Health sandal.

Fourth row:

16. Ladies’ casual shoe. 17. Quaint ladies’ fashion shoe. 18. Ladies’ walking
shoe. 19. Espadrille. 20. Beach sandal.
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The distinctive features of these footware are:

1. Designed for babies
2. ” men and women
3. ” men only
4. ” women only
5. ” all seasons
6. ” cold season
7. ” hot season
8. ” indoor use
9. ” fashion
10. ” leisure
11. ” work
12. ” for sporting
13. ” for military or heavy outdoor use
14. Highly waterproof
15. Against rough and rocky ground

The computation of the SOM is made by the following script In the beginning
the data matrix X is defined. Its rows correspond to the various footware defined
above, and its columns define the distinctive features.

X = [1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 1 1 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0 1 0 1

0 1 0 0 1 0 0 0 0 0 1 0 0 0 1

0 1 0 0 1 0 0 0 0 0 1 0 0 0 1

1 0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 1 1 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0 0 1 1 0 1

0 0 1 0 0 1 0 0 0 0 0 0 0 1 0

0 1 0 0 1 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 1 1 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 0 1 0 0 1

0 1 0 0 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 0 0 1 0 0 1 0 0 0 0

0 0 0 1 0 0 1 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 1 1 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0 1 0 0 0 0 0

0 0 0 1 0 0 1 0 0 1 0 0 0 0 0

0 1 0 0 0 0 1 0 0 1 0 0 0 0 0];

msize = [8 8];

lattice = ’hexa’; % hexagonal lattice

neigh = ’gaussian’; % neighborhood function

radius_coarse = [3 1]; % " radius, coarse [initial final]

radius_fine = [1 1]; % " radius, fine [initial final]
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trainlen_coarse = 30; % cycles in coarse training

trainlen_fine = 20; % cycles in fine training

smI = som_lininit(X, ’msize’, msize, ’lattice’, lattice,...

’shape’, ’sheet’);

smC = som_batchtrain(smI, X, ’radius’, radius_coarse,...

’trainlen’, trainlen_coarse, ’neigh’, neigh);

sm = som_batchtrain(smC, X, ’radius’, radius_fine,...

’trainlen’, trainlen_fine, ’neigh’, neigh);

M = sm.codebook;

norms2 = sum(M.*M,2);

som_cplane(’hexa’, msize, ’none’);

for u = 1:20

X1 = X(u,:)’;

Y = norms2 - 2*M*X1;

[C,c]= min(Y);

ch = mod(c-1,8) + 1;

cv = floor((c-1)/8) + 1;

Now we have obtained the coordinates (ch,cv) into which the symbols of
the various footware have to be plotted. We are drawing the pictures manually,
but the corresponding places on the som cplane are computed first numerically.
Because there are multiple collisions, the shift2 parameters separate the item
numbers in the display.

if mod(cv,2) == 1

shift1 = -.2;

else

shift1 = .3;

end

if u == 11 || u == 12 || u == 16

shift2 = -.3;

else if u == 4 || u == 7 || u == 9 ...

|| u == 17 || u == 18

shift2 = .3;

else

shift2 = 0;

end

end

text(ch+shift1, cv+shift2, num2str(u), ’FontSize’,10)

end

The illustrative clustering, the order in which may be self-explanatory, is
provided in Fig. 26.
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Fig. 26. Ordering of various footwear on the SOM according to their usage. The pic-
tures of different footwear were drawn at the coordinates ch, cv determined by the
above SOM script. Note that it would have been impossible to define dichotomies with
respect to all of the 15 distinctive features. However, it is possible to discern various
polarizations: mens’ footware on the right, ladies’ footware on the left. Note in par-
ticular the locations of the baby shoes! Fashion shoes lie at top-left and top-middle,
light shoes at bottom-left, strong protective shoes at top-right, and various sandals as
well as the rubber booth that are worn by both ladies and men lie at the bottom. The
sporting shoe that is also worn by ladies as well as by men lies in the middle.
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18 Two-class separation of mushrooms on the basis of
visible attributes

This is an extension of binary attributes to symbolic attributes
that have more than two values. The distributions of mush-
room data, represented by symbolic attributes, are shown as
histograms on the SOM groundwork, and the edible and poi-
sonous mushrooms are separated automatically

Objective:

This is a well-known benchmarking example of classifying North-American
mushrooms into edible and poisonous species, based solely on their visible
attributes. This example is now handled by the SOM.

The problem. This example classifies 23 species of gilled mushrooms grow-
ing in North-America. The Audubon Society Field Guide [55] describes them
in terms of their physical characteristics, and classifies them as definitely edible,
definitely poisonous, or of unknown edibility and not recommended.

The present realistically-looking benchmarking data set has been designed
and donated in 1987 for mathematical studies by Jeff Schlimmer (Jeffrey.Schlimmer
@ a.gp.cs.cmu.edu). From that homepage you can find the attribute information
given also below, and via the link agaricus-lepiota.data on Schlimmer’s home-
page the attribute values are downloadable. The mushrooms are described by
22 categorical (discrete) attributes. The present test data contain 8124 instances
where the ”definitely poisonous” and ”not recommended” classes are combined
into a single ”poisonous” class.

For example, the first attribute ”cap-shape” can have a value of {b, c, x, f,
k, s} which stand for {bell, conical, convex, flat, knobbed, sunken}, respectively.

Attribute information:

1. cap-shape: bell=b, conical=c, convex=x, flat=f, knobbed=k, sunken=s

2. cap-surface: fibrous=f, grooves=g, scaly=y, smooth=s

3. cap-color: brown=n, buff=b, cinnamon=c, gray=g, green=r, pink=p, purple=u,
. red=e, white=w, yellow=y

4. bruises?: bruises=t, no=f

5. odor: almond=a, anise=l, creosote=c, fishy=y,foul=f, musty=m, none=n,
. pungent=p, spicy=s

6. gill-attachment: attached=a, descending=d, free=f, notched=n

7. gill-spacing: close=c, crowded=w, distant=d

8. gill-size: broad=b, narrow=n

9. gill-color: black=k, brown=n, buff=b, chocolate=h, gray=g, green=r, orange=o,
. pink=p, purple=u, red=e, white=w, yellow=y

10. stalk-shape: enlarging=e, tapering=t
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11. stalk-root: bulbous=b, club=c, cup=u, equal=e, rhizomorphs=z, rooted=r,
. missing=?

12. stalk-surface-above-ring: fibrous=f, scaly=y, silky=k, smooth=s
13. stalk-surface-below-ring: fibrous=f, scaly=y, silky=k, smooth=s
14. stalk-color-above-ring: brown=n,buff=b, cinnamon=c, gray=g, orange=o,

. pink=p, red=e, white=w, yellow=y
15. stalk-color-below-ring: brown=n, buff=b, cinnamon=c, gray=g, orange=o,

. pink=p, red=e, white=w, yellow=y
16. veil-type: partial=p, universal=u
17. veil-color: brown=n, orange=o, white=w, yellow=y
18. ring-number: none=n, one=o, two=t
19. ring-type: cobwebby=c, evanescent=e, flaring=f, large=l, none=n, pendant=p,

. sheathing=s, zone=z
20. spore-print-color: black=k, brown=n, buff=b, chocolate=h, green=r, orange=o,

. purple=u, white=w, yellow=y
21. population: abundant=a, clustered=c, numerous=n, scattered=s, several=v,

. solitary=y
22. habitat: grasses=g, leaves=l, meadows=m, paths=p, urban=u, waste=w,

. woods=d

The agaricus-lepiota.data data set is given as a 8124-row symbolic data ma-
trix, of which the first five rows are copied below. The first symbol e or p on each
row stands for ”edible” or ”poisonous”, respectively. The next 22 symbols rep-
resent the values of the 22 physical attributes. Attribute No. 11 contains about
30 per cent of missing data, and is simply ignored in the following computations.

Mushroom table Mt:

Mt = [p,x,s,n,t,p,f,c,n,k,e,e,s,s,w,w,p,w,o,p,k,s,u

e,x,s,y,t,a,f,c,b,k,e,c,s,s,w,w,p,w,o,p,n,n,g

e,b,s,w,t,l,f,c,b,n,e,c,s,s,w,w,p,w,o,p,n,n,m

p,x,y,w,t,p,f,c,n,n,e,e,s,s,w,w,p,w,o,p,k,s,u

e,x,s,g,f,n,f,w,b,k,t,e,s,s,w,w,p,w,o,e,n,a,g

... 8124 rows) ... ]

Conversion of symbols into unit vectors. We see that the source data
are given in symbolic form, but the SOM works with real numbers. The models
in the SOM are usually metric vectors, and in the training process they modify
their values gradually.

Notice that you cannot compare the magnitudes of two symbolic attributes : ei-
ther you have them or you don’t. Now we may think that these attributes are unit
vectors in higher-dimensional spaces. To explain what I mean, consider the first
attribute ”cap-shapedness” that has one of the six possible values of {b, c, x, f,
k, s}. Let us introduce the six units vectors in this six-dimensional feature space.
They are formally: b = [1 0 0 0 0 0], c = [0 1 0 0 0 0], x = [0 0 1 0

0 0], f = [0 0 0 1 0 0], k = [0 0 0 0 1 0] and s =[0 0 0 0 0 1]. The
second attribute ”cap-surfaceness” has one of four possible values {f,g,y,s} and
is described by one of the four unit vectors f = [1 0 0 0 ], g = [0 1 0 0
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], y = [0 0 1 0 ], and s = [0 0 0 1]. The third attribute corresponds to
ten-dimensional unit vectors, and so on. So, when we then concatenate the unit
vectors that correspond to the due abstract symbols, the first four input items
(not regarding the class symbols p, e and e in the first location) start with

x = [0 0 1 0 0 0], s = [0 0 0 1], ...

x = [0 0 1 0 0 0], s = [0 0 0 1], ...

b = [1 0 0 0 0 0], s = [0 0 0 1], ...

x = [0 0 1 0 0 0], y = [0 0 1 0], ...

Concatenated in the horizontal and vertical directions, the unit vectors con-
stitute the input data matrix

X = [0 0 1 0 0 0 0 0 0 1 ...

0 0 1 0 0 0 0 0 0 1 ...

1 0 0 0 0 0 0 0 0 1 ...

0 0 1 0 0 0 0 0 1 0 ...

...

... ]

When we neglect attribute No.11 that has missing values, the concatenated
unit vectors that form the input vectors have the dimensionality of 119. Al-
though they are binary vectors, at the same time they can also be regarded as
real vectors, and the real model vectors of the SOM are then trying to approxi-
mate them metrically.

Automatic conversion. The conversion of the large symbolic mushroom
table Mt into the large numerical input data matrix X of the SOM can be made
conveniently by the following script. Below, the script starts with the attribute
array A. Both Mt and A are vertical symbol arrays, the former with the dimen-
sionality of 8124 by 22 (note: the first symbol on each row of M is the symbol of
classification ”edible/poisonous”), and the latter array A with the dimensional-
ity of 8124 by 12. (In vertical symbol arrays in which the strings of symbols have
different lengths, all rows must be filled with blank symbols so that the length
is always the same, here equal to 12):

A = [’bcxfks ’

’fgys ’

’nbcgrpuewy ’

’tf ’

’alcyfmnps ’

’adfn ’

’cwd ’

’bn ’

’knbhrgopuewy’

’et ’
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’fyks ’

’fyks ’

’nbcgopewy ’

’nbcgopewy ’

’pu ’

’nowy ’

’not ’

’ceflnpsz ’

’knbhrouwy ’

’acnsvy ’

’glmpuwd ’];

X = zeros(81241,119);

for s = 1:8124

d = 0;

for a = 2:22

A1 = A(a-1,:);

A2 = A1(find(A1~=’ ’));

for t = 1:length(A2)

if Mt(s,a) == A2(t)

X(s,t+d) = 1;

end

end

d = d + length(A2);

end

end

The SOM script. Assuming that the input data matrix X has been con-
structed in the above fashion and saved as the file mushroomdata.mat, the rest
of the script is straightforward. With the comments it may be understandable
as such.

Because in this example we are using so-called hit diagrams which separate
the input items according to their classification, it is better to use the component
vectors of the input data matrix X in the computation of the winners.

file = ’mushroomdata’;

load ([file ’.mat’])

msize = [15 20];

lattice = ’hexa’;

neigh = ’gaussian’;

radius_coarse = [5 1];

trainlen_coarse = 30;

radius_fine = [1 1];

trainlen_fine = 30;

smI = som_lininit(X, ’msize’, msize, ’lattice’, lattice, ’shape’, ...

’sheet’);
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smR = som_batchtrain(smI, X, ’radius’, radius_coarse, ’trainlen’, ...

trainlen_coarse, ’neigh’, neigh);

sm = som_batchtrain(smR,X, ’radius’, radius_fine, ’trainlen’, ...

trainlen_fine, ’neigh’, neigh);

M = sm.codebook;

norms2 = sum(M.*M),2);

hits = zeros(8124, 2); % No. of winners mapped into an SOM node

% in either of the two subplots

for u=1:8124

U = X(u,:)’;

Y = norms2 - 2*M*U;

[C,c]= min(Y);

After that, the winners of the edible mushrooms are mapped into node c

in one subplot, and the winners of the poisonous mushrooms into node c in
another subplot, respectively. These subplots use the hit variables hits(c,1)

and hits(c,2), which accumulate and display the hit diagrams.

if Mt(u,1) == ’e’

hits(c,1) = hits(c,1) + 1;

end

if Mt(u,1) == ’p’

hits(c,2) = hits(c,2) + 1;

end

end

The plotting of Fig. 27 starts with two rows that define the gray scales. The
commands after that may be self-explanatory.

figure;

colormapigray = ones(64,3) - colormap(’gray’);

colormap(colormapigray);

for k=1:2

subplot(1,2,k);

som_cplane(sm, hits(:,k));

set(gca,’FontSize’,10);

if k == 1

title(’Edible’);

end

if k == 2

title(’Poisonous’);

end

end

savefilename = ’mushroomplots’;

print(’-dpng’, [savefilename ’.png’]);



88

Fig. 27. The distributions of hits of the two classes of mushrooms on the SOM.

Discussion. The results of classification are shown as the two histograms on
the SOM, ”Edible” vs. ”Poisonous.” The numbers of winners on each node of the
two subplots are shown by gray-level diagrams. There is very small overlapping
in these subplots: only one dot (fifth row from bottom, third dot from the right)
coincides in both graphs. So practically the SOM separates these classes.

In the earlier benchmarking studies of algorithms that analyzed these data,
one was evaluating the classification accuracy, in a search of distinctive attributes
that would clearly separate the edible mushrooms from the poisonous ones. Such
a combination of key attributes was never found. I think that such a study should
also be made by using test data that are statistically independent of the training
data. If the data set is very restricted, one can used the ”leave-one-out” method:
if we have N items in the data base, here N = 8124, then one may repeat the
test by constructing the SOM N − 1 times, every time leaving one of the items
for a test item and constructing the SOM out of the rest of the N − 1 items.
That would mean a lot of work in this case. However, it is not the purpose to
carry out any statistical studies here, so Fig. 27 may suffice for a demonstration.
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19 Clustering of scientific articles

Separating the histograms of four related classes of articles on
the SOM groundwork

Objective:

So far we have based the clustering of items on their attribute values. In
this section we introduce a new set of features, namely, the vocabulary
that is used in a document. We show that it is possible to distinguish and
classify documents by means of weighted word histograms, and show the
distributions of the document classes on the SOM groundwork.

Almost every SOM computation starts with a more or less extensive prepro-
cessing of the raw data. The next example has been chosen to demonstrate how
classes of documents, such as scientific articles, can be represented on the SOM
and distinguished from each other on the basis of the usage of words. We describe
how sets of documents can be mapped onto the SOM array as histograms plotted
onto the SOM groundwork. Each input data item is a document. One frequently
used method to identify documents in text analysis is to describe them by their
word histograms. In order to increase class separation, all words are first reduced
into their stem forms. Then there exist stopwords, i.e., short function words,
such as ’a’, ’the’, ’is’, ’and’, ’which’, ’on,’ ’like’ etc. that can be removed from
the text without decreasing the statistical information contained in it. Further-
more the words in the histograms can be weighted by statistical arguments: e.g.,
one frequently used weight is the negentropy of the words. Another viable choice
is the inverse document frequency (IDF) of the word. The document frequency
is the number of documents in which a particular word occurs, and the IDF is
its inverse. These weights are very effective in increasing class separation of the
documents.

Reuters data. The text corpus used in this experiment was taken from a
collection of articles published by the Reuters corporation. No original articles
were available to us; however, Lewis et al. [53], who prepared this corpus for
benchmarking purposes, have preprocessed the textual data, ignoring stopwords
and reducing the remaining word forms into their stems. The word histograms
of the documents were weighted by specific statistical coefficients introduced
by Manning and Schütze [58]. J. Salojärvi from our laboratory then selected
a 4000-document subset from the Reuters collection, restricting only to such
articles that could be assigned to one of the following classes:

1. Corporate-Industrial.
2. Economics and Economic Indicators.
3. Government and Social.
4. Securities and Commodities Trading and Markets.
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There were 1000 documents in each class. Salojärvi then picked up those 233
words that appeared most often in the selected texts and made a corresponding
233-element selected-word histogram for each document. He then weighted the
elements of the 233-dimensional histograms of the documents by the coefficients
used by Manning and Schütze [58]. In this way we have obtained the vectorial
representations of the input data items: 4000 vectors with 233 real-valued input
components each.

Since this classification problem is already more demanding than the previ-
ous ones and contains a lot of more data, the different parts of the script will
now be explained in detail.

Loading of input data. The input data were given as the 4000 by 234
matrix documentdata, in which each row is of the form [label element(1)

... element(233)], this time without any stored variable names.
First, the input data are loaded. The classifications of the data into the

four classes are defined by the first elements on each row of the documentdata

matrix, and loaded by the instructions

load(’documentdata.mat’);

labels = documentdata(:,1);

The 4000-element vector labels now identifies the classes of the documents.
Then, the numerical input data X are defined by

X = zeros(4000,233);

for i = 1:233

X(:,i) = documentdata(:,i+1);

end

Checking for missing data. Especially with big statistical data bases,
one cannot be always sure whether accidentally some of the input vectors might
contain only zero elements and should be ignored. Therefore we start the present
problem with a typical operation to verify and validate only nonzero data. As a
matter of fact, it indeed turned out in posterior checking that in this application,
in spite of careful (automatic) selection of the input data, one input vector out
of the 4000 was zero!

The following lines detect all zero input vectors and form a new vector
labels, in which the value of the class label is set to 0 for the zero vector.

nonzeroindex = find(sum(X’));

X = X(nonzeroindex,:);

labels = labels(nonzeroindex);
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Initialization and the two training phases. Only in very simple problems
one training phase will suffice. In a bigger problem like this we already have
to use two training phases, a coarse and a fine one, for one thing because we
want to make use of an automatic stopping rule. During the coarse training
phase, the radius of the neighborhood function decreases linearly; during the
fine training phase it must be held constant, whereupon sooner or later the
learning terminates exactly.

The size of the SOM array for this problem was selected to be 10 by 15 nodes.
Let us start with initialization, which preferably ought to be linear:

smI = som_lininit(X, ’msize’, [10 15], ’lattice’, ...

’hexa’, ’shape’, ’sheet’);

For the coarse training we start with the SOM values obtained in initializa-
tion, which are still in the struct form smI. Nonetheless they can be inserted into
the som batchtrain function. Now we must use separate parameters in coarse
and fine training, respectively. Let us take

radius_coarse = [4 1] ;

radius_fine = [1 1];

trainlen_coarse = 30;

trainlenlen_fine = 10;

In coarse training we start with the initialized SOM smI and end up with
the SOM smC. In fine training we start with smC and end up with the final value
sm:

smC = som_batchtrain(smI, X, ’radius_coarse’, [4 1], ...

’trainlen_coarse’,30, ’neigh’, ’gaussian’);

sm = som_batchtrain(smC, X, ’radius_fine’, [1 1], ...

’trainlen_fine’, 1, ’neigh’, ’gaussian’ )

Notice that the coarse and fine training functions are formally similar, they
only use different parameters.

Stopping rule. If we hold radius fine constant during fine training, the
algorithm terminates in a finite number of cycles, at least if the topographical
order of the SOM has been achieved in coarse training. To that end the number
of coarse training cycles must be sufficient, say, 30 (we shall test this in a number
of benchmarking runs below).
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The stopping criterion is that the SOM matrix does not change in any further
training cycles. In practice we can test this quicker by following the norm of
the SOM matrix, which has to achieve a constant value, too. So we attach the
following lines after the fine training cycles:

R = 1000000; % any large number bigger than norm(sm.codebook)

while R - norm(sm.codebook) > 0

R = norm(sm.codebook);

sm = som_batchtrain(sm, X, ’radius_fine’, [1 1], ...

’trainlen’, 1, ’neigh’, gaussian);

end

Forming the histograms. The SOM was computed using all of the 4000
input vectors for training. After that, the distributions of the documents of each
of the four classes on the SOM were determined. In testing, the vectors of each
class in turn are input to the SOM (but this time without any further training
of the SOM), finding the winners (hits) for each input vector on the SOM array,
and accumulating the hits on each winner node of the array for each of the four
classes. The number of hits on each node is shown by a shade of gray (Fig. 28).
The hit diagrams are automatically normalized by the MATLAB, relative to
their maximum value. So the four hit diagrams have different scales.

The documents in this problem were classified into four classes, and each
document was provided with a numerical classifier (label) 1 through 4.

One way of using the SOM is to show by several subplots how the different
data classes are mapped onto the SOM array. The number of ”hits” of data
items on the various nodes constitute a kind of ”histogram,” which is visualized
by shades of gray.

Let c denote a node and let i be a class label. Then the four histograms
(”hits”), defined by the matrices hits(c,i) are computed by the following
script:

M = sm.codebook;

norms2 = sum(M.*M,2);

for u = 1:50

hits = zeros(size(M, 1), 4);

for i = 1:4

classvectors = X(find(labels == 1), :);

for u = 1:size(classvectors, 1)

X1 = classvectors(u, :)’;

Y = norms2 - 2*M*X1;

[C,c] = min(Y);

hits(c, i) = hits(c, i) + 1;

end
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Fig. 28. Distribution of the documents of the four classes on an SOM. Class 1:
Corporate-Industrial. Class 2: Economics and Economic indicators. Class 3: Govern-
ment and Social. Class 4: Securities and Commodities Trading and Markets. The SOM
was computed using all of the documents. The mapping of documents of each class
onto the same SOM is shown in the four subplots, in which the number of documents
mapped on a particular node is shown by a shade of gray. The process has converged
fully.

end

end

The four histograms, hits(c, i) are plotted by the following lines:

figure;

colormapigray = ones(64, 3) - colormap(’gray’);

colormap = colormapigray);

for i = 1:4

subplot(2,2,i);

som_cplane(sm, hits(:, i));

set(gca, ’FontSize’. 10);

title([Class ’ num2str(i)]);
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end

19.1 The complete script

Because this is a good typical example of the application of the SOM in practice,
we write the complete script here once again:

% Parameters

msize = [15 20];

lattice = ’hexa’;

neigh = ’gaussian’;

radius coarse = [4 1];

trainlen coarse = 20;

radius fine = [1 1];

trainlen fine = 20;

% Data loading

load(’documentdata.mat’);

labels = documentdata(:,1);

X = zeros(4000,233);

for i = 1:233

X(:,i) = documentdata(:,i+1);

end

% Preprocessing

nonzeroindex = find(sum(X’));

X = X(nonzeroindex,:);

labels = labels(nonzeroindex);

% Initialization

smI = som lininit(X, ’msize’, msize, ’lattice’, ...

’hexa’, ’shape’, ’sheet’)

% Coarse training

smC = som batchtrain(smI, X, ’radius’, radius coarse, ...

’trainlen’, trainlen coarse, ’neigh’, ’gaussian’ )

% Fine training

sm = som batchtrain(smC, X, ’radius’, radius fine, ...

’trainlen’, trainlen fine, ’neigh’, ’gaussian’ )

% Stopping rule

R = 1000000; % any large number bigger than...

norm(sm.codebook)

while R - norm(sm.codebook) > 0
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R = norm(sm.codebook);

sm = som batchtrain(sm, X, ’radius’, radius fine, ...

’trainlen’, 1, ’neigh’, neigh);

end

% Computation of the histograms

hits = zeros(size(M, 1), 4);

norms2 = sum(M.*M,2);

for i = 1:4

classvectors = X(find(labels == 1), :);

for u = 1:size(classvectors, 1)

X1 = classvectors(u, :)’;

Y = norms2 - 2*M*X1;

[C,c] = min(Y);

hits(c,i) = hits(c,i) + 1;

end

end

% Plotting

figure(1);

colormapigray = ones(64, 3) - colormap(’gray’);

colormap = colormapigray);

for i = 1:4

subplot(2,2,i);

som cplane(sm, hits(:, i));

set(gca, ’FontSize’, 10);

title([Class ’ num2str(i)]);

end

% Saving the results

savefilename = ’4histograms’;

save(savefilename, ’M’);

print(’-.dpng’, [savefilename ’.png’]);

This completes the script.
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20 Convergence tests; benchmarking

Computing times vs. parameter values

Objective:

One frequently asked question is how many training cycles one needs to
build up an SOM. If no prior experience exists, it is best to use a trial-
and-error method to study the first example. However, there seem to exist
some general rules to answer this question, and for larger problems, one
can also construct a stopping rule that tells when the SOM matrix does
not change any longer in training. This section contains benchmarking
studies on training lengths.

It was stated earlier that a two-phase SOM converges in a finite number of
batch cycles, if the neighborhood function is held constant in fine training. We
believe that the document-classification problem is statistically rather typical,
and we perform a small set of benchmarking experiments on it. The number
of input items was 4000, and this figure represents an experiment of a modest
size. Also the size of the SOM array, [10 15] is typical for many SOM studies
published in the literature.

20.1 The original Reuters example

The following table (Table 2) shows the number of fine training cycles necessary
for convergence vs. typical coarse training. The first column represents the initial
radius in coarse training, and the second column the number of coarse training
cycles used.

The number of fine training cycles for full convergence (when the SOM is no
longer altered in further fine training cycles) was determined for a set of com-
binations of the initial neighborhood radius in coarse training, and the number
of batch cycles in coarse training, respectively. It is generally known that the
benchmarking of computing times is a bit questionable, because from one run
to another, the use of the memory hierarchy is affected by the history of the
computations.The given figures are averages from several runs, but still only
approximative. Nonetheless, one might expect that the more coarse cycles one
is using, the less fine cycles one would need. However, as the figures show, this
is neither always true. There seems to be an optimal combination of both coarse
and fine cycles for each initial neighborhood radius. The explanation is the fol-
lowing. In the linear initialization, an even distribution of the model vectors is
set. The coarse training phase initially disturbs this evenness, because it is start-
ing to match the model vectors with the eventually ”crooked” density function,
and this disturbance is the larger, the wider the neighborhood function is in the
beginning and the longer the coarse training phase is. So it is clear from these
figures that it is a better policy to be ”gentle” in coarse training, and to let the
SOM adjust itself to the density function of the input vectors smoothly.
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Table 2. The number of fine training cycles, as a function of the initial
neighborhood radius in coarse training and the number of coarse training cycles

Init. coar. rad. Coar. cycl. Time Fine cycl. Time Total
3 23 4.6 17 3.2 7.8
3 24 5.0 14 2.4 7.4
3 25 5.0 24 4.6 9.6
4 17 3.0 23 3.7 6.7
4 18 3.3 14 3.0 6.3
4 19 4.7 16 3.1 7.8
5 25 5.0 34 6.5 11.5
5 26 4.6 20 3.6 8.2
5 27 5.0 26 5.1 10.1

One notices that with the initial coarse radius 4, the minimal computing time
is 6.3 seconds, which is obtained with 18 coarse batch cycles and 14 fine batch
cycles.

From this experiment we obtain a rule of thumb, which seems to be true
rather generally:

With batch training and linear initialization, the initial coarse radius
should be on the order of 20 per cent of the longer side of the SOM
array.

Unfortunately there does not exist any expression for the optimal number
of coarse training cycles. However, a quick check can be made. With the initial
coarse neighborhood radius 4 and 30 coarse training cycles, the algorithm termi-
nated in 35 fine training cycles, and the computing time was 15.2 seconds. So, if
the computing time is not important, one might first try a few dozens of coarse
training cycles.

20.2 Upscaling the SOM matrix

In this subsection we study the effect of the array size on the convergence of
the SOM algorithm. First we double the linear dimensions of the SOM array,
i.e., msize = [30 40]. The initial neighborhood radius must also be doubled:
radius coarse = [8 1]. Now we carry out the computations for the coarse
radius 8 and compare the results with those of Table 2.
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Table 3. The number of fine training cycles for a 1200-node SOM array, as
a function of the number of coarse training cycles

Init. coar. rad. Coar. cycl. Time Fine cycl. Time Total
8 26 22.6 17 17.8 40.4
8 27 23.7 19 9.4 33.1
8 28 25.2 9 9.4 34.6
8 29 25.4 11 11.3 36.7
8 30 26.0 13 13.6 39.6

So, the SOM array has now four times as many nodes as before, and the
computing time has become roughly fivefold. The optimal number of coarse
cycles is on the same order of magnitude as with the smaller SOM array. At
least it does not grow rapidly with the size of the SOM array.

Next we quadruple the linear dimensions of the original SOM array, i.e.,
msize = [60 80]. The initial neighborhood radius must also be quadrupled:
radius coarse = [16 1]. Now we carry out the computations for the coarse
radius 16 and compare the results with those of Tables 2 and 3.

Table 4 . The number of fine training cycles for a 4800-node SOM array, as
a function of the number of coarse training cycles

Init. coar. rad. Coar. cycl. Time Fine cycl. Time Total
16 8 64 12 275 339
16 9 69 10 225 294
16 10 73 9 200 273
16 11 79 9 200 279
16 12 85 8 176 261
16 13 91 8 177 268
16 14 97 9 200 297
16 15 103 10 225 328
16 16 109 10 225 334
16 17 116 10 227 343

So, the SOM array has now 16 times as many nodes as initially, but the
computing time has only become roughly seven- or eight-fold. This may be due
to the fact that in the large maps the neighborhoods, during the coarse training,
contain plenty of nodes, which has a strong smoothing action on learning. This
also indicates that for large sizes of the SOM array, the number of coarse training
cycles needed may be smaller than in the small maps.
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21 Calibration of the nodes by the Bayesian decision rule

Indication of classes by pseudo-colors

Objective:

Sometimes we need a compressed representation of the distribution of the
classes on the SOM. In a single image we cannot show the forms of the
class distributions, but we may try to create the class borders onto the
SOM groundwork. The statistically most justified determination of the
borders is based on the Bayesian method.

Again we use the Reuters example for demonstration. First we explain how
the nodes of an SOM can be calibrated using majority voting over the class
labels.

Fig. 29. Calibration of the SOM according to the majority of classes of documents that
have been mapped on the various nodes. The majority of classes has neen indicated by
colors. Red: Corporate-Industrial. Green: Economics and Economic indicators. Blue:
Government and Social. Yellow: Securities and Commodities Trading and Markets.

We show in Fig. 29 how the mapping of the four classes onto the SOM can
be illustrated in one color display. First we carry out a majority voting over
the class labels: i. e., we check what is the majority of class labels of those
documents that have been mapped onto a particular node, and we color the
node correspondingly: red for samples of Class 1, green for Class 2 samples, blue
for Class 3 samples, and yellow for Class 4 samples, respectively. This kind of
classification of the nodes is said to be based on the Bayesian decision rule, and
it is one kind of calibration of the SOM nodes.

Naturally, if we associate with each document a pointer to the location (node)
where it is mapped, we can easily check what its most probable classification is,
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as esteemed on the basis of its vocabulary, and what are those documents that are
most similar to it, because they can be found at the neighboring nodes. For this
purpose the nodes must be provided with symmetric or double-linked pointers,
i.e., pointers from the documents to the nodes, and pointers from the nodes to
the documents, respectively. This arrangement is particularly important if we
receive a new, unknown document, and want to see the classification of that
node into which the document is mapped on the SOM.

The following piece of script implements the computation of the color picture
of Fig. 29:

% Majority of class labels at a node

nodelabels = zeros(300,1);

for i=1:length(nodelabels)

[C,c] = max(hits(i,:));

nodelabels(i) = c;

end

% Range of colors

mixturelabelcolormap = [ones(1,64); ...

[1:-1/63:0];[1:-1/63:0]] [[1:-1/63:0]; ...

ones(1,64); ...

[1:-1/63:0]] [[1:-1/63:0]; [1:-1/63:0]; ...

ones(1,64)][ones(1,64); ones(1,64); [1:-1/63:0]] ...

[0 1; 0 1; 0 1]]’;

% MATLAB structure for SOM Toolbox instructions

som_topology = struct(’type’, ’som_topol’, ...

’msize’, msize, ’lattice’, ...

’hexa’, ’shape’, ’sheet’);

mixturecolor = nodelabels*64;

% Plotting

figure;som_cplane(som_topology, ...

mixturelabelcolormap(round(mixturecolor),:));

% Saving

savefilename = ’Bayespicture’ ;

print(’-dpng’, [savefilename ’.png’]);
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22 Calibration of the nodes by the kNN rule

Another common calibration of the SOM nodes

Objective:

Sometimes we are more interested in a smooth labeling of the SOM,
instead of the most accurate classification of unknown input items. Then
we can use the kNN labeling, explained next.

Especially if there is only a small number of input data items available, in
relation to the size of the SOM array, so that the above majority voting makes no
sense (e.g., there are too many ties, or there are no hits at some of the models),
one can apply the so-called k-nearest-neighbors (kNN) labeling method. For each
model, those k input data items that are closest to it (in the metric applied in
the construction of the SOM) are searched, and a majority voting over them is
carried out to determine the most probable labeling of the node. In the case of
a tie, the value of k is increased until the tie is resolved. Usually k is selected to
be on the order of half a dozen to a hundred, depending on the number of input
data items and the size of the SOM array.

In the present Reuters-data example, we had about 13 input items mapped
into each node on the average, so there is actually no need to resort to the kNN
rule, but it is anyway applied here for comparison. The following script is needed,
where the earlier notations of norms2, M and X are used:

% Take originally k nearest neigbors into account

k = 10;

kOrg = k;

nodelabels = zeros(size(M,1),1);

% Find the labels of nearest neighbors (’in’)

for i=1:length(nodelabels)

[v,in] = sort(norms2 - 2*M*X’);

k = kOrg;

v21 = 0;

v22 = 0;

while v21 == v22 % if there is a tie, increment k

% No. of varous classes (’labs’) in ...

% the neigboring documents

labs = [length(find(labels(in(1:k)) == 1)) ...

length(find(labels(in(1:k)) == 2)) ...

length(find(labels(in(1:k)) == 3)) ...

length(find(labels(in(1:k)) == 4))];

% Sorting ’labs’ into decreasing order
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[v2,in2] = sort(-labs);

v21 = v2(1); % documents in largest class

v22 = v2(2); % documents in second-largest class

k = k + 1; % if there is a tie, increment k

end

nodelabels(i) = in2(1); % most probable labeling by kNN

end

The vector nodelabels now contains the classifications of the nodes. Its plot
in Fig. 30 looks smoother than that in Fig. 29, but the Bayesian method may
define deviating classes of nodes within larger homogeneous areas more reliably.

Fig. 30. Calibration of the SOM by the kNN rule, k = 10. Red: Corporate-Industrial.
Green: Economics and Economic indicators. Blue: Government and Social. Yellow:
Securities and Commodities Trading and Markets.



103

23 Approximation of an input data item by a linear
mixture of models

Text analysis by least-squares fitting of documents using non-
negative coefficients

Objective:

An interesting problem in text analysis is whether a given text follows
too closely any old text or texts. Then its is thinkable to expand the
given text in terms of vocabularies of a number of known texts. This
would otherwise be impractical, if it did not exist a modern method of
finding such optimal linear mixtures of models, where the coefficients
in the expansion are restricted to non-negative values. It turns out that
this principle also automatically restricts the expansion to a very small
number of possible reference texts to be taken into account.

The text classification example discussed in the above section demonstrated
that it is possible to assign an unknown text into some class of known texts by
classifying it on the basis of its use of words, i.e., weighted vocabulary.

Nonetheless, an even more intriguing application would be if one could point
out several sources of text, of which the unknown text is a combination. The
method discussed next does not only indicate that this is possible, but it also
measures the relative contents of the foreign sources.

An analysis hitherto generally unknown is introduced in this chapter; cf.
also [43], [44]. The purpose is to extend the use of the SOM by showing that
instead of a single winner model, one can approximate the input data item
more accurately by means of a set of several models that together define the
input data item more accurately. It shall be emphasized that we do not mean k
winners that are rank-ordered according to their matching. Neither do I suggest
parallel winners, each defined over a local area of the SOM. Instead, the input
data item is approximated by an optimized linear mixture of the models, using
a nonlinear constraint.

Consider the n-dimensional SOM models mi, i = 1, 2, . . . , p, where p is the
number of nodes in the SOM. Their general linear mixture is written as

k1m1 + k2m2 + . . .+ kpmp = Mk , (7)

where the ki are scalar-valued weighting coefficients, k is the p-dimensional col-
umn vector formed of them, and M is the matrix with the mi as its columns.
Now Mk shall be the estimate of some input vector x. The vectorial fitting error
is then

e = Mk− x . (8)

Our aim is to minimize the norm of e in the sense of least squares. How-
ever, the special nonlinear constraint must then be taken into account in this
optimization.
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Much attention has recently been paid to least-squares problems where the
fitting coefficients are constrained to non-negative values. Such a constraint is
natural, when the negatives of the items have no meaning, for instance, when
the input item consists of statistical indicators that can have only non-negative
values, or is a weighted word histogram of a document. In these cases at least,
the constraint contains additional information that is expected to make the fits
more meaningful.

23.1 The lsqnonneg function

The present fitting problem belongs to the broader category of quadratic pro-
gramming or quadratic optimization, for which numerous methods have been
developed in recent years. A much-applied one-pass algorithm is based on the
Kuhn-Tucker theorem, as explained in [51], but it is too involved to be reviewed
here in full. Let it suffice to mention that it has been implemented in MATLAB
as the function named the lsqnonneg. Below, the variables k, M, and x must be
understood as being defined in the MATLAB format. Then we obtain the weight
vector k as

k = lsqnonneg(M,x) . (9)

The lsqnonneg function can be computed, and the result will be meaningful,
for an arbitrary rank of the matrix M. Nonetheless it has to be admitted that
there exists a rare theoretical case where the optimal solution is not unique. This
case occurs, if some of the mi in the final optimal mixture are linearly dependent.
In practice, if the input data items to the SOM are stochastic, the probability
for the optimal solution being not unique is negligible. At any rate, the locations
of the nonzero weights are unique even in this case!

23.2 Description of a document by a linear mixture of SOM models

The following analysis applies to most of the SOM applications. Here it is ex-
emplified using the Reuters data.

In text analysis, one intriguing task is to find out whether a text comes
from different sources, whereupon its word histogram is expected to be a linear
mixture of other known histograms.

The example that demonstrates the fitting of a linear mixture of models to a
given document is based on the lsqnonneg function. The text corpus was derived
from the Reuters data as described earlier.

The piece of script that is needed to find and display the linear-mixture coef-
ficients is very short, indeed. Let X(art,:) represent the unknown article, and
let M be the SOM matrix. Then the linear-mixture coefficients K are obtained
by the MATLAB lsqnonneg(M’, X1) function directly; they are displayed as
gray-shade dots onto the SOM array into due places.
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X1 = X(art,:)’;

K = lsqnonneg(M’, X1);

figure;

som_cplane(sm, K);

Fig. 31. A linear mixture of SOM models fitted to a new, unknown document. The
weighting coefficients ki in the mixture are shown by intensities of shade in the dots.
(From [43].)

Fig. 31 shows a typical example, where a linear mixture of SOM models was
fitted to a new, unknown document. The values of the weighting coefficients ki
in the mixture are shown by dots with intensities of shade that correspond to
the weights of the corresponding SOM model vectors. The weights are displayed
in the locations of the model vectors.

It is to be emphasized that this fitting procedure also defines the optimal
number of the nonzero coefficients. In the experiments with large document
collections, this number was usually very small, less than a per cent of the
number of models.

When the models fall in classes that are known a priori, the weight of a model
in the linear mixture also indicates the weight of the class label associated with
that model. Accordingly, by summing up the weights of the various types of class
labels one then obtains the class affiliation of the input with the various classes.

Discussion. This principle has also been applied with success to the eval-
uation of grant applications submitted to the Academy of Finland. (No official
decisions were based on it, though.) The purpose was not so much to find pla-
giarisms but to analyze to what areas of science or its subfields an application
belongs, and to find the most proper reviewers. There seems to exist an impor-
tant area of application here.
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24 The SOM of mobile phone data

Using lsqnonneg components instead of winners to display the
state of a system

Objective:

The lsqnonneg principle might find applications also in the control of
processes and in the monitoring of machineries. We have made a pilot
study on the monitoring of mobile-phone cells, the performance of which
(especially finding mixtures of faulty states) can be detected by this prin-
ciple.

The second concrete example of forming linear mixtures of models comes from
the study of the continuous performance of a cell in a mobile-telephone network.
The input vector to the SOM was defined by 22 variables that describe the
key performance indices (KPI) such as signal qualities in inward and outward
transmission, frequencies of breaks in operation relating to different kinds of
faults, and loadings of the cell. We had data from 110 such cells available, and
each of the records was an average of the respective measurement or evaluation
over an hour.

The particular SOM constructed for this study consisted of 80 models with
the dimensionality of 22. The operation of one cell over nine successive hours
has been exemplified here.

One might find similar applications in industry and medicine, where contin-
uous processes are monitored. In some of the applications that we have studied,
e.g., continuous casting of steel, milling of steel stripes, continuous cooking of
cellulosa, and operation of a power transformer and an anaesthesia machine,
the various states of the machinery that occurred during an appreciable time
of operation defined an SOM. The present state was classified by following the
sequence of the ”winner” during a period of interest.

However, we now want to show that a more accurate view of the state of the
equipment can be obtained if instead of a single ”winner” on the SOM, a linear
mixture of the responses, defined by the lsqnonneg function is displayed. I do not
thereby mean that the ”winner,” together with a few of its strongest ”runners-up”
should be displayed. The lsqnonneg function defines all of the nonzero coefficients
in the linear mixture, and the ”winner” may not even exist among them!

The first of the two pictures, Fig. 32 depicts a sequence of the winners over
nine hours. The second one, Fig. 33 , is the corresponding sequence of the lsqnon-
neg coefficients, where the values of the coefficients are shown by the shade of
gray. One can see that the ”winners” are not always included among the coef-
ficients, but if they are (subimages 3, 6, 7, and 8), the linear mixture normally
consists of fewer components. In other words, the state is then more ”pure.”
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Fig. 32. A sequence of nine successive ”winners” in the operation of a cell in a mobile
telephone network over nine hours.

Fig. 33. The sequence of all nonzero lsqnonneg coefficients.
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25 Categorization of words by their local contexts; toy
example

Clustering of words on the basis of their local contexts

Objective:

In this and the next section we demonstrate that the ”similarities” be-
tween input items can be defined in an indirect way, which may give rise
to new data mining experiments. The ”contextual SOMs”of words belong
to psycholinguistic studies, in which the semantic meaning of words en-
sues from their occurrence in the contexts of their neighboring words in
the text.

Description of the principle. A little known area of SOM applications is
psycholinguistics. In the analysis of texts, the semantic role of a word transpires
from its occurrence in the local context of other words. The local context around a
particular word in the text, called the target word, can be defined in several ways.
In early works it was made to consist of three successive words centered around
the target word, or of two words of which the latter was the target word. In this
toy example we take for the context the previous and the next word to the target
word, respectively. E.g., consider a piece of text ”it will rain here today .” If the
word ”rain” is selected for the target word, the local context is [will ... here]. If
the target word is ”here”, the local context is [rain ... today]. The local context
is a kind of pattern vector, and its words are the pattern elements. In statistical
text analysis with the SOM, the local contexts around all of the consecutive
words in the text corpus constitute the input data items.

Consider then the following pieces of text: ”it will rain here today”, ”it will
snow here today”, ”it will rain here tomorrow”, and ”it will snow here tomorrow”.
The words ”rain” and ”snow” occur twice in similar contexts, and are thus
contextually similar. Obviously there exist very delicate and complex correlations
between the various words in natural contexts.

One may try to cluster the local contexts according to their mutual contex-
tual similarities. To that end, each of the contexts, as an input item, is identified
by its target word.

A simple contextual SOM. A simple example [71] shows that the SOM
can cluster target words of different word classes into separate areas on the SOM
array, in an orderly fashion, on the basis of the local contexts in which they oc-
cur. In that work, three-word sentences of the type subject-predicate-object or
subject-predicate-predicative were constructed artificially. In this ”toy example”
the vocabulary consisted only of 30 words, which were mapped onto the SOM
as shown in Fig. 34. The words became segregated according to their linguistic
roles in an orderly fashion: for instance, if you pay attention to the nouns, the
proper nouns are in their own corner, then follow the names of animals, and after
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that the materials. (The three curves separating the classes were drawn by hand.)

Fig. 34. A simple contextual SOM

Artificially generated clauses. For this demonstration, a small vocab-
ulary, shown in Fig. 35(a), was defined. Its words are divided into categories.
Each category is shown on a separate line. First there are three proper names
of humans, and then three names of animals. These constitute all subjects in
the artificially constructed sentences (clauses). The vocabulary continues with
two names of liquids and two names of food, which are objects. Then follow 12
verbs, of which two categories constitute transitive verbs. These are followed by
four categories of intransitive verbs. Finally there are listed four categories of
adverbs.

The categories restrict the use of the words in such a way that words on the
same row are freely interchangeable as sentence constituents in order to form
meaningful clauses. This grouping brings about the contextual patterns.

All of the logically possible sentence patterns are listed in Fig. 35(b). In Fig.
35(a) we have the vocabulary, in which the numerals refer to the rows, or word
categories. Examples of artificially generated, meaningful clauses are shown in
Fig. 35(c).

Nonetheless the sentence patterns may give rise to unusual clauses, e.g., ”Bob
likes Bob,” or ”horse hates water.” This example was only meant for the expla-
nation of the principle, and its mending would mean a significant extension of
the set of sentence patterns.

Since we want to reproduce this experiment, our first task is to transform
these source data into a convenient MATLAB format.

Random word codes. In order that only the word combinations would
make sense in the local contexts, the writing of the words must not effect the
context pattern. In other words, for this experiment we must use codes for the
words, which are as independent of each other as possible.



110

Fig. 35. (a) List of used words (nouns, verbs, and adverbs), (b)Legitimate sentence
patterns, and (c) Some examples of generated three-word clauses. (From [39])

The most usual input patterns in SOM studies are metric vectors. Therefore
we use random vectors for the word codes. If the dimensionality of the random
vectors is high enough, the correlation, or the dot product of two random vectors,
is negligible and guarantees the dissimilarity of the words. It is most effective to
take random vectors which have a normal distribution. We use MATLAB vectors
randn, which are (0,1)-normal random vectors.

The random-code vocabulary corresponding to Fig. 35(a) is shown below.
In our preliminary studies it turned out that the dimensionality of 10 of the
random vectors is quite sufficient for this experiment; with larger vocabularies
the dimensionality must be higher, as will be shown in Section 24.

In the original vocabulary shown in Fig. 35(a) we had 15 rows, and we can
imagine that there are three columns, some of which are sparse. When all words
are reorganized as a single-column array, the random vocabulary shall have 45
rows, but we are using only those random vectors that have the same first indices
i for which Z(i) = 1.

len = 100000; % number of sentence patterns selected

dim = 10; % dimensionality of vocabulary vectors

randn(’seed’,30000)

rand(’seed’,30000)

L1 = ’ h w b wwsvp lhd l sos p’;

L2 = ’BJModcbamrraopihbsiaremiflfewo’;

L3 = ’oiaroaeteeulresouektiautaotleo’;

L4 = ’bmrsgteeaankkainyleentctswedlr’;

L5 = ’ ye rrtdssskteslsskshltlnoll’;

L6 = ’ sss s s e y m y’;
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% Vocabulary:

randword = randn(45,dim); % random values of the vocabulary

Z = ones(45,1);

Z(9) = 0; Z(12) = 0; Z(15) = 0; Z(18) = 0; Z(21) = 0;

Z(24) = 0; Z(27) = 0; Z(29) = 0; Z(30) = 0; Z(32) = 0;

Z(33) = 0; Z(36) = 0; Z(39) = 0; Z(42) = 0; Z(45) = 0;

Stream of clauses. A great number (100,000) of artificial clauses were gen-
erated by randomly selecting a sentence pattern from Fig. 35(b) and substituting
randomly selected alternatives for words from the due categories in Fig. 35(a).
After that, the words were replaced by the corresponding random-code vectors.
These three-member clauses are then concatenated into a simple stream of 10-
dimensional random-code vectors, without any separating delimiters between the
clauses .

In our MATLAB demonstration we pick up the random word codes from the
above vocabulary. First we have to form the sentence patterns.

Forming the clauses in MATLAB. The sentence patterns shown in Fig.
35(b) can be written as decimal numbers: e.g., 1-5-12 is written as 10512.

% Sentence patterns:

clause(1) = 10512; clause(14) = 10902; clause(27) = 20514;

clause(2) = 10513; clause(15) = 10903; clause(28) = 20901;

clause(3) = 10514; clause(16) = 10904; clause(29) = 20902;

clause(4) = 10612; clause(17) = 11003; clause(30) = 20903;

clause(5) = 10613; clause(18) = 11104; clause(31) = 20904;

clause(6) = 10614; clause(19) = 11012; clause(32) = 21003;

clause(7) = 10615; clause(20) = 11013; clause(33) = 21012;

clause(8) = 10714; clause(21) = 11014; clause(34) = 21013;

clause(9) = 10812; clause(22) = 11112; clause(35) = 21014;

clause(10) = 10802; clause(23) = 11113; clause(36) = 21104;

clause(11) = 10803; clause(24) = 11114; clause(37) = 21112;

clause(12) = 10804; clause(25) = 20512; clause(38) = 21113;

clause(13) = 10901; clause(26) = 20513; clause(39) = 21114;

If we know the number k of the clause, the numbers of the rows in the orig-
inal vocabulary, Fig. 35(a), are obtained by first regarding these five digits as a
decimal number. The rows in the old vocabulary can then be computed as

row of the first member in the clause: floor(clause(k)/10000) + 1

= row1;
row of the third member in the clause: mod(clause(k),100) = row3;
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row of the second member in the clause: (clause(k) - 10000*row1 -

row3)/100;

For instance, for clause(25) we have floor(20512/10000) + 1 = 2,

mod(20512,100) = 12, and (20512 - 10000*2 - 12)/100 = 5.

If we denote the row in the old vocabulary by oldrow and the column in the
old vocabulary by column, we have in the new one-column vocabulary :

newrow of any member in the clause: 3*(oldrow-1) + column;

One of the columns (1, 2, 3) is selected randomly, as we shall see.

Forming the random-code text words and the text stream. Next
we start generating the artificial text stream, which consists of 10-dimensional
random vectors randword obtained from the new vocabulary.

1. We select the number argclause of the sentence pattern randomly.

2. For each member of the pattern in turn, we determine the category
oldrow (row in the old vocabulary).

3. As a function of oldrow, we define three successive rows in the new
vocabulary as newrow, newrow+1, and newrow+2, respectively.

4. A textword is defined as a random-code vector from the new vocab-
ulary, the choice depending on the number of alternatives in the category.

5. The random-code vector so obtained is appended to the text stream.

textword = zeros(3,dim);

tex = zeros(3*len,dim);

XL = zeros(30,dim);

XR = zeros(30,dim);

N = zeros(30,1);

X = zeros(30,2*dim);

% Construction of text stream

for S = 1:len

argclause = floor(39*rand) + 1; % number of the clause

for memb = 1:3

if memb == 1

oldrow = floor(clause(argclause)/10000);

newrow = 3*(oldrow-1) + 1;
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V1 = oldrow; % V1, V2 auxiliary variables

end

if memb == 2

V2 = mod(clause(argclause),100);

oldrow = (clause(argclause) - 10000*V1 - V2)/100;

newrow = 3*(oldrow-1) + 1;

end

if memb == 3

oldrow = V2;

newrow = 3*(oldrow-1) + 1;

end

if Z(newrow+1) == 1 && Z(newrow+2) == 1

if rand < 1/3

textword = randword(newrow,:);

else if rand < 2/3

textword = randword(newrow+1,:);

else

textword = randword(newrow+2,:);

end

end

end

if Z(newrow+1) == 1 && Z(newrow+2) == 0

if rand < .5

textword = randword(newrow,:);

else

textword = randword(newrow+1,:);

end

end

if Z(newrow+1,:) == 0 && Z(newrow+2) == 0

textword = randword(newrow,:);

end

tex(3*(S-1) + memb,:) = textword;

end

end

Forming the input patters to the SOM. The inputs to the SOM will
now be picked up from the above tex vector in the following way. A gliding
window of three successive word positions in the text is defined, and the three
successive random vectors found in the window are concatenated into a single
21-dimensional input vector X to the SOM.

Note that when scanning the stream of word codes, only in one of three cases
the obtained input vector X is positioned correctly with respect to the sentence
pattern and contains a true clause, whereas in two cases out of three the code
triple extends over the clause limits, and the ”clause” does not make any sense.
However, since the choice of successive clauses is random, the illegitimate word
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triples picked up from adjacent clauses can be regarded as pure noise. So only
every third word triple is effective in organizing the SOM. One can become con-
vinced about that when carrying out the experiment.

Comment: Naturally one could have used separately generated clauses for
SOM inputs, but the whole idea of this experiment was to show that the contex-
tual SOM can make sense out of a continuous stream of words, where occasionally
there are meaningful pieces of code triples.

Accelerated learning using averaged contexts as inputs. The whole
experiment could have been performed as described above, but a faster learning,
especially in saving computing time, is obtained using average context vectors of
words. This will be very necessary in the large experiment to be reported in the
next Sec. 27.

For speedup, the training data can be clustered around the words of the
vocabulary. A particular word occurring in the text is called the target word .
The produced text is scanned, and an average of the random-code vectors on
both sides of a particular target word, averaged over the whole text corpus,
is formed. In this way we obtain the averaged contexts for each unique word
separately, and the number of averaged contexts, i.e., the number of training
input data items, is the same as the number of words in the vocabulary (i.e.,
only 30 in this example).

Let us again start from the text vector of size [99999 10]. Let us define X to
be the averaged input vector of size [30 14]. We scan the text 30 times, each
time finding the indices of the various X in the text, and sum up the adjacent
random vectors, one sum XL for the words on the left side of the target word,
and one sum XR for the words on the right side of the target word, respectively.
At the same time we count the occurrences N of the target words, and divide
the sums by them.

% Inputs to the SOM

u = 0;

for v = 1:45 % word in vocabulary

if Z(v) == 1

u = u + 1;

for w = 2:3*len - 1

if tex(w,1) == randword(v,1)

XL(u,:) = XL(u,:) + tex(w-1,:);

XR(u,:) = XR(u,:) + tex(w+1,:);

N(u) = N(u) + 1;

end

end

XL(u,:) = XL(u,:)/N(u);

XR(u,:) = XR(u,:)/N(u);

Now we concatenate XL and XR to form the 14-dimensional input vectors to
the SOM:
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for j = 1:dim

X(u,j) = XL(u,j);

end

for j = dim+1:2*dim

X(u,j) = XR(u,j-dim);

end

end

end

Computation of the SOM. Since the training data X are now known, the
SOM can be computed by the som lininit and som batchtrain functions.

% Computation of the SOM

msize = [9 12];

lattice = ’hexa’;

smI = som_lininit(X, ’msize’, msize, ’lattice’, lattice, ...

’shape’, ’sheet’);

smC = som_batchtrain(smI,X,’radius’,[4 1],’trainlen’,100, ...

’neigh’, ’gaussian’);

sm = som_batchtrain(smC,X,’radius’,[1 1],’trainlen’,50, ...

’neigh’, ’gaussian’);

Plotting and labeling the SOM. In this very simple example, we input the
averaged context vectors X again, this time not executing any training, and find
the node indices c of the corresponding winners. From these the horizontal and
vertical rows, ch and cv of c, are computed. With the aid of these coordinates
it is possible to insert texts, namely, the explicit writings of the words, into the
due locations (cv,ch) on the SOM plane, given as labels L(in the beginning of
the script):

% Calibration

som_cplane(’hexa’,msize,’none’);

M = sm.codebook;

norms2 = sum(M.*M,2);

for u = 1:30

X1 =X(u,:)’;

Y = norms2 - 2*M*X1;

[C,c] = min(Y);

ch = mod(c-1,9) + 1;

cv = floor((c-1)/9) + 1;

if mod(ch,2) == 1

shift1 = -.45;

else

shift1 = .1;

end

if u == 1 || u == 4

shift2 = -.3
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else if u == 3 || u == 6

shift2 = +.3

else if u == 7 || u == 9 || u == 11 || u == 13 ...

|| u == 15 || u == 17 || u == 19 ...

|| u == 25 || u == 27 || u == 29

shift2 = -.2;

else if u == 8 || u == 10 || u == 12 || u == 14 ...

|| u == 16 || u == 18 || u == 20 ...

|| u == 26 || u == 28 || u == 30

shift2 = .2;

else

shift2 = 0;

end

end

end

end

string = [L1(u) L2(u) L3(u) L4(u) L5(u) L6(u)];

text(cv+shift1,ch+shift2,string,’FontSize’,8);

end

The computed SOM, corresponding to Fig. 34, is shown below as Fig. 36.
Some minor differences are there, but one should pay attention to the almost
perfect clustering : the pairs of words with opposite meaning or being closely
related to each other are mapped into the same or adjacent nodes.

Fig. 36. A simple contextual SOM, recomputed in MATLAB.
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26 Contextual maps of Chinese words

This is a big experiment in which word classes, based on con-
textual features, were plotted as histograms on the SOM

Objective:

In this section we describe a scientific project that uses a very large
corpus of linguistically parsed text. It follows the idea explained in the
previous section, but instead of displaying individual words on the SOM,
it plots the histograms of various word classes on the SOM groundwork.

Inflexions of words. In most languages the words are inflected, and many
linguistic forms are indicated by endings. This would be a problem in the unique
encoding of words. One simple solution is to regard each inflected form as a
unique word. A more effective method is to transform each word form into its
base form or stem, and to assume that the contextual relations are not changed.

Notwithstanding there exist languages such as Chinese, in which the words
are not inflected at all, and which are then ideal for context experiments: even
deep semantic meanings ensue solely from the contexts of the words. The Chinese
texts consist of characters, which are highly standardized pictographs, each one
with semantic loading. They act like letters, but their number is many thousands.
The words, on the other hand, consist of one, two, or even many more successive
characters, but there are usually no spaces between the words in texts. For the
segmentation of texts into words there exist nowadays many automatic text-
processing methods, but the Chinese-speaking people are able to carry out the
segmentation instinctively (cf Fig. 37).

Fig. 37. A Chinese greeting

The Modern Chinese Research Corpus. We were very lucky for having
at our disposal a very large Chinese text corpus called the MCRC, or the Modern
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Chinese Research Corpus [83], which contained 1,524,121 words in electronic
form, collected from newspapers, novels, magazines, TV subtitles, folktales, and
other material from modern Chinese media. Each word in this text corpus was
classified into one of 114 classes, of which 89 were genuine linguistic classes,
while the rest consisted of punctuation marks and nonlinguistic symbols. Each
character was represented by a standard Unicode consisting of one to five decimal
digits.

In this experiment, in order to take more contextual information into ac-
count, the local contexts were made to consist of five successive words.

Averaged contexts of words. In principle, one might expect that all of
the successive local-context vectors of the text corpus should have been used
as input data in training the SOM. However, since the experiment was carried
out using MATLAB scripts in which the SOM Toolbox extension was included,
there was simply no memory reserved for that size of input data. A reasonable
approximation is to form the averaged contexts for all unique words that oc-
curred in the text: their number was 48,191. The averages can be formed by
scanning the text corpus and forming the averages over 1,524,117 words (notice
that the target words for the full five-word contexts must start at the third word
and end two words before the end of the corpus). So the input data vectors are
of the form x(w) = avgi(w)[ri−2, ri−1, ri, ri+1, ri+2]. Here i is the word position
in the text, w is the word at it, the r are the random-vector representations of
the successive words, and avgi is the operator averaging over i.

Exclusion of nonlinguistic symbols. As a matter of fact, since our aim
was to carry out a linguistic context analysis, we further decided to ignore all such
local contexts which involved at least one nonlinguistic symbol. This happened
especially at the beginning and at the end of sentences where full stops could
not be taken to the contexts. In all, after such ”purification” there were still
27,090 linguistically pure local contexts left, and this amount of input data was
considered as sufficient for forming a 2000-node SOM array.

After the SOM had been computed, we constructed the histograms of re-
sponses to various sets of test words.

26.1 Preparation of the input data

The amount of preprocessing in the contextual SOMs, compared with the other
applications, is rather high. However, I shall describe this experiment in as many
details as possible, hoping that this method would be applicable to text corpora
of other languages as well.

The Unicode. The Chinese characters, like the special letter symbols of
many other languages, are stored and transmitted in electronic form encoded by
the Unicode. We decided to handle only words that contain up to four characters.
The relative number of Chinese words that consist of more than four characters
is less than 1/1000 of all words, at least in the MCRC corpus, so we decided
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to ignore such words in this experiment. At any rate the error caused by this
omission is negligible, on the order of magnitude of ”noise,” and was not expected
to cause any visible changes in the SOMs produced.

Below we see an example of such decimal codes: each horizontal line corre-
sponds to one word in the text. The T1 through T4 are the Unicodes for char-
acters used in the text. The first word contains only one character T1; therefore
T2 = T3 = T4 = 0. The second word consists of three characters, and so on. The
fifth column tells the decimal codes of the word classes. For instance, 34 means
general nouns and 82 verbs without objects. The label 103 is a nonlinguistic
symbol, etc.

There are in total 1,524,121 entries in Table 5.

Table 5. An excerpt of the Unicode-encoded file of text words.

character T1 character T2 character T3 character T4 label
... ... ... ... ...

30340 0 0 0 63
20013 25104 33647 0 34
12290 0 0 0 103
22269 21153 38498 0 39
37319 21462 0 0 82
30340 0 0 0 63
... ... ... ... ...

The next task is the construction of a lexicon, where all unique words of the
text are entered only once. A particular problem is that about 6 per cent of the
words in the text have an ambiguous classification: although the word form is
the same, they are assigned to either of two possible classes, usually a general or
a more specific one. It was decided that each word is assigned to that class that
occurs most often with it. The physical appearance of the lexicon is otherwise
similar to Table 5, except that each unique word occurs in it only once. The
order of the words in the lexicon can be arbitrary. The characters in the lexicon
are denoted L1, L2, L3 and L4, respectively. There are 48,191 entries in the
lexicon.

26.2 Computation of the input data files for the SOM

As mentioned earlier, for the SOM method in general, it is most effective to rep-
resent the input data as metric vectors. On the other hand, the representations
of all unique words should be as uncorrelated as possible; it is the combination
of the word codes in the local context that carries the contextual information.
In other words, the occurrence of the same word codes in different local contexts
then defines the degree of similarity of different local contexts. Thus, the basic
idea in the computation of contextual SOMs is to assign a unique random vector
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to every unique lexical word. This assignment is made only once, not every time
when the word is used. The random vectors must have a high dimensionality,
say, on the order of a couple hundred, and be preferably normally distributed
with zero mean, in order to be mutually as orthogonal as possible.

Choosing variable-length random coding for words. In earlier works
the random vectors always had the same dimensionality for every word inde-
pendent of their position in the local context. In those works the length of the
local context was two or three words. Later studies have shown that there might
exist an optimal length for the local context, because the strongest contextual
effect comes from the nearby words and gets weaker when the words are more
distant from each other. It has also turned out that if the local-context vector
is longer, say, being composed of five segments as mentioned before, it may be
advisable to use a dimensionality of the random vectors that is a function of the
position of the word in the longer context. In the present study we have made
the following choice, which is solely based on experience:

For the middle word (denoted by the index w), the random vector had
the dimensionality of 50. For the words with the indices w−1 and w+1,
the dimensionality of their random vectors was 200, and for the words
with the indices w − 2 and w + 2, the dimensionality of their random
vectors was 100, respectively.

% Global parameters

len_text = 1524121; % length of text

len_lex = 48191; % length of lexicon

NewLex = 27090; % length of compressed lexicon

Dim = 50; % unit of dimensionality

% Definition of the context segments

XL2 = zeros(len_lex,2*Dim); % leftmost segment of context

XL1 = zeros(len_lex,4*Dim); % left segment of context

XM0 = zeros(len_lex,Dim); % middle segment of context

XR1 = zeros(len_lex,4*Dim); % right segment of context

XR2 = zeros(len_lex,2*Dim) % rightmost segment of context

Encoding the lexicon. First of all we must have a lexicon of all unique
words n used in the text and for their class labels. Let the lexicon be represented
by the matrix L(n, j), were the elements L(n, 1) through L(n, 4) correspond to
the decimal-valued Unicodes of the word n = 1, 2, ..., 48191, and L(n, 5) is the
class label of the word n, with the values 1, 2, ..., 114. As mentioned earlier, the
class labels 1 through 89 are labels of pure linguistic classes and the labels 90
through 114 are labels of punctuation marks and nonlinguistic symbols.
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% Lexicon: Unicodes of lexical words

filename = ’lexicon’;

load ([lexicon ’.dat’]);

L = lexicon; % labels in lexicon = L(:,5)

words = zeros(len_lex,1); % frequency of target words in text

Construction of random context codes for the text words. Let us
denote the text corpus by another matrix T (w, j), where the elements T (w, 1)
through T (w, 4) correspond to the decimal-valued Unicodes of the word w =
1, 2, ..., 1524121, and T (w, 5) is the class label of word w, with the values 1, 2,
..., 114.

We start the construction of the input vectors X to the SOM by scanning
the text from left to right and determining the indices n1, n2, n3, n4, and n5 of
the five successive words w− 2, w− 1, w, w+ 1, and w+ 2. In this scanning we
ignore the words with labels 90 though 114, the word class 1, which is a special
punctuation mark, and the class 23, which in this corpus was empty.

% Input data: Unicodes of text words and labels

filename = ’textfile’;

load([filename ’.dat’]);

T = textfile;

labels = textfile(:,5);

% Computation of random segments

% Unique random codes for all lexical words: initial values

R2 = randn(len_lex,2*Dim);

R1 = randn(len_lex,4*Dim);

R0 = randn(len_lex,Dim);

for w = 3:len_text-2 % scanning the text corpus, ends excluded

% Exclusion of certain classes

if labels(w-2)<90 && labels(w-1)<90 && labels(w)<90 ...

&& labels(w+1)<90 && labels(w+2)<90,

if labels(w-2)~=1 && labels(w-1)~=1 && labels(w)~=1 ...

&& labels(w+1)~=1 && labels(w+2)~=1,

if labels(w-2)~=23 && labels(w-1)~=23 && labels(w)~=23 ...

&& labels(w+1)~=23 && labels(w+2)~=23,

The following indices n1 through n5 are the indices of words in the vocab-
ulary, with the aid of which the random words codes can be located.
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% location of context words (Unicodes) in lexicon

n1 = find(L(:,1)== T(w-2,1)&L(:,2)== T(w-2,2) ...

& L(:,3)== T(w-2,3)&L(:,4)== T(w-2,4));

n2 = find(L(:,1)== T(w-1,1)&L(:,2)== T(w-1,2) ...

& L(:,3)== T(w-1,3)&L(:,4)== T(w-1,4));

n3 = find(L(:,1)== T(w, 1)&L(:,2)== T(w, 2) ...

& L(:,3)== T(w, 3)&L(:,4)== T(w, 4));

n4 = find(L(:,1)== T(w+1,1)&L(:,2)== T(w+1,2) ...

& L(:,3)== T(w+1,3)&L(:,4)== T(w+1,4));

n5 = find(L(:,1)== T(w+2,1)&L(:,2)== T(w+2,2) ...

& L(:,3)== T(w+2,3)&L(:,4)== T(w+2,4));

words(n3) = words(n3) + 1; % no. of target words found

The next task is to form the averages of the random context vectors. It starts
with the summing up of random codes of the words into the context segments,
after which they are divided by the word frequencies. At the same time, if some
lexical words do not occur in the text (due to our restriction to ”pure” contexts,
which do not contain punctuation marks or other nonlinguistic symbols), the
new lexicon is reduced to the length NewLex, and saved for the construction of
the SOM:

% superposition of random vectors to segments of vector X

XL2(n3,:) = XL2(n3,:) + R2(n1,:);

XL1(n3,:) = XL1(n3,:) + R1(n2,:);

XM0(n3,:) = XM0(n3,:) + R0(n3,:);

XR1(n3,:) = XR1(n3,:) + R1(n4,:);

XR2(n3,:) = XR2(n3,:) + R2(n5,:);

end

end

end

end

% Averages of word codes

NewLex = 0;

for n = 1:len_lex

if words(n) > 0 % target words used

for j = 1:2*Dim

XL2(n,j) = XL2(n,j)/words(n);

XR2(n,j) = XR2(n,j)/words(n);

end
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for j = 1:Dim

XM0(n,j) = XM0(n,j)/words(n);

end

for j = 1:4*Dim

XL1(n,j) = XL1(n,j)/words(n);

XR1(n,j) = XR1(n,j)/words(n);

end

NewLex = NewLex + 1;

end

end

The input vectors X to the SOM are now formed by concatenation of the
computed segments into input vectors of higher dimensionality of 13:

% Concatenation of word segments to form X

X = zeros(NewLex,13*Dim);

lexlabels = zeros(NewLex,1);

v = 1; % index of input item

for w = 1:len_lex

if words(w) > 0

% Leftmost T

for d = 1:2*Dim

X(v,d) = XL2(w,d);

end

% Left T

for d = 2*Dim+1:6*Dim

X(v,d) = XL1(w,d-2*Dim);

end

% Middle T

for d = 6*Dim+1:7*Dim

X(v,d) = XM0(w,d-6*Dim);

end

% Right T

for d = 7*Dim+1:11*Dim

X(v,d) = XR1(w,d-7*Dim);

end
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% Rightmost T

for d = 11*Dim+1:13*Dim

X(v,d) = XR2(w,d-11*Dim);

end

% Labels

L1(v) = L(w,5);

v = v+1;

end

end

filename = ’mcrc_inputs’;

save([filename ’.mat’], ’X’);

filename = ’mcrc_labels’; % new labels with indices 1 ... NewDim

save([filename ’.mat’], ’L1’);

26.3 Computation of the SOM

The SOM is computed along similar lines as before. We want to have a reasonable
resolution in the map, so the array size is chosen as 40 by 50. It is to be noted
that since the neighborhood function is Gaussian, its radius need not be an
integer; for better resolution the final radius could be .5 units, and the initial
(coarse) radius could be, say,equal to 6. We start by 30 training cycles in both
coarse and fine learning, which turns out to be sufficient.

The input data X were computed by the previous script.

msize = [40 50];

lattice = ’hexa’; % hexagonal lattice

neigh = ’gaussian’; % neighborhood fuction

radius_coarse = [6 .5]; % neighb. radius, coarse [initial final]

trainlen_coarse = 30; % cycles in coarse training

radius_fine = [.5 .5]; % neighb. radius, fine [initial final]

trainlen_fine = 30; % cycles in fine training

% Linear initialization

smI = som_lininit(X, ’msize’, msize, ’lattice’, lattice, ’shape’, ...

’sheet’);

% Coarse training

smC = som_batchtrain(smI, X, ’radius’, radius_coarse, ’trainlen’, ...

trainlen_coarse, ’neigh’, neigh);

% Fine training

sm = som_batchtrain(smC, X, ’radius’, radius_fine, ’trainlen’, ...

trainlen_fine, ’neigh’, neigh);
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% Stopping rule

R = 1000000;

while R - norm(sm.codebook) > 0

R = norm(sm.codebook);

sm = som_batchtrain(sm, X, ’radius’, radius_fine, ’trainlen’, 1, ...

’neigh’, neigh);

R1 = norm(sm.codebook);

end

filename = ’mcrc_som’;

save([filename ’.mat’], ’sm’);

Notice the last line above: it was advisable to save the SOM memory in the
struct form sm, because the som cplane instruction then becomes very simple,
and the matrix form of the memory can always be recovered by the expression
M = sm.codebook.

Forming word histograms. When the SOM matrix now has been com-
puted and stored, it can simply be loaded, together with the computed labels, in
further scripts to make any number of histograms, without having to repeat the
above computations. Below is the script for making the histograms. One may
write it as a function to give the number of the linguistic class and the title
of the picture as its arguments (notice that ”class” and title” may be reserved
words):

function histograms(Class, Title)

filename = ’mcrc_som’;

load([filename ’.mat’], ’sm’);

M = sm.codebook;

filename = ’mcrc_somlabels’;

load([filename ’.mat’], ’L1’);

M = sm.codebook;

hits = zeros(2000,1); % hit diagram on the SOM

norms2 = sum(M.*M,2);

for u=1:NewDim

if L1(u) == Class % decimal code of class to be displayed

X1 = X(u,:)’;

Y = norms2 - 2*M*X1;

c = min(Y);

hits(c,1) = hits(c,1) + 1;

end

end
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% Display

colormapigray = ones(64,3) - colormap(’gray’);

colormap(colormapigray);

figure(1);

som_cplane(sm, hits(:,1)); % simplest declaration of SOM plane

set(gca,’FontSize’,10);

title(Title); % give the title of class to be written

To this script we may add the instructions for making multiple diagrams
with texts, for saving space.

26.4 The histograms of four main word classes

At this point we may already be interested in seeing some results of computation.
We start with showing the histograms of all adjectives, all adverbs, all nouns,
and all verbs, respectively. All adjectives belong to the classes 2 through 8, all
adverbs to the classes 10 through 12, all nouns to the classes 33 through 42, and
all verbs to the classes 72 through 89, respectively.

Fig. 38 combines the above four diagrams. The modification of the script
”Display” to make a combination of four maps has not been shown explicitly.
We can see that the overlapping of these four histograms is very small.

The MATLAB graphics has a default setting of normalizing the shades of
gray: the maximum value in the histogram is always painted in black. Therefore
the absolute values cannot be compared directly.across the different subplots.
Of course there exists an option for changing the gray scales individually, but a
drawback would be that some histograms would then not be visible at all.

The noun histogram is widest of all the four. It extends over the whole SOM,
which shows that the nouns occur in many kinds of contexts. The verbs are
contextually more specific, an one can discern some very tight clusters of verbs,
as the case also is with the adverbs. We will see that there exist many specific
subclasses of verbs.

We can see that to a reasonable extent the four main word classes are segre-
gated on the SOM and have a small overlap. In particular one may pay attention
to the areas where the verbs have a cluster; at least the corresponding areas in
the noun display are white.

26.5 Subsets of nouns, verbs, and pronouns

Next we show that the main classes are further divided into finer subclasses.
In the following two combination pictures, four specific noun classes, and four
specific verb classes are depicted. The noun classes are: ”Names of people” (given
names), ”Surnames,” ”Names of places,”, and ”Names of organizations.” They
are shown in Fig. 39.

The areas where the specific nouns are situated are more sparse than the areas
of general nouns, but the clusters are also very narrow. They are well segregated
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Fig. 38. The hit histograms of all adjectives, all adverbs, all nouns, and all verbs,
respectively. The shades of gray cannot be directly compared across the pictures, be-
cause the MATLAB graphics automatically draws the maximum value in black, and
all the other shades are only relative to that. Nonetheless it is obvious that the nouns
have the widest distribution. The four distributions do not overlap significantly, which
shows that the words of the four main word classes normally occur in different kinds
of contexts.

from each other. The ”names of people” in Chinese mean given names, which at
least occur in different kinds of contexts compared with those of the surnames.

In addition to these, there are still several classes for specific nouns, and
idioms that act like nouns. The number of words in these classes is so small that
the histograms cannot be formed.

The specific verb classes shown here are: ”Verbs followed by nouns” (in some
languages they would be called transitive verbs), ”Verbs without objects” (in-
transitive verbs), ”Modal verbs,” and ”Linking verbs” (Fig. 40.) It should be
noted that the MATLAB graphics normalizes the histogram scales so that the
maximum is always painted in black; therefore it is not possible to directly com-
pare the shades of gray between the different subplots.

In addition to these subclasses, there are still classes like ”Verbs as objects,”
”Verbs as subjects,” ”Verbs as adverbs,” ”Verbs as modifying components in
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Fig. 39. The hit histograms of ”Names of people,” ”Surnames,” ”Names of places,”
and ”Names of organizations.” These histograms are more sparse than the histograms
of general word classes, which is understandable: there are a great many specific noun
classes defined in the MCRC, but in each of them there is only a small subset of words
that belong to the general noun class. At any rate, these classes are well segregated:
one cannot find occupied areas in the four histograms that would coincide.

noun phrases,” ”Verbs as the core of noun phrases,” and various idioms acting
like verbs. Usually the number of words in these subclasses is so small that the
histograms do not look realistic.

We still plot the subcategories of pronouns as parsed in this corpus: ”Pro-
nouns as adjectives,” ”Pronouns as adverbs,” Pronouns as subjects or objects,”
and ”Pronouns as attributes.” . In two of the subclasses there were so few words
that there is only one exemplar of each; this is indicated by the dots being com-
pletely black. The subclasses have been defined according to the role of a word
as a sentence constituent, and not so much as a basic linguistic word class.

The four subclasses of pronouns are shown in Fig. 41.
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Fig. 40. The hit histograms of ”Verbs followed by nouns,” ”Verbs without objects,”
”Modal verbs,” and ”Linking verbs.”.

Discussion. One might ask what is the rationale behind showing this kind
of complicated example. One reason, of course, is that it might stimulate and
help analytical research in psycholinguistics. However, the study of the Chinese
language was not in central role. If one had access to parsed text corpora of
comparable size or bigger, this analysis could apply to many languages.



130

Fig. 41. The hit histograms of ”Pronouns as adjectives,” ”Pronouns as adverbs,” ”Pro-
nouns as subjects or objects,” and ”Pronouns as attributes.”
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27 Computation of the ”Welfare map” of 1992 by the
SOM Toolbox

Estimation of missing data (”Inputting”)

Objective:

In the SOM Toolbox there is no provision for matching items on the basis
of incompletely defined data, like in our SOM PAK program package. In
this section we try to mend this problem by estimating the missing values
by referring to the nearest neighbors on the SOM array.

27.1 The problem of missing data (Incomplete data matrices)

It has turned out that the SOM is a rather robust algorithm. It tolerates slightly
wrong parameter values and too few iteration cycles in training, and still pro-
duces almost correct-looking SOMs. It can also handle one frequently encoun-
tered problem in practice, namely, the problem caused by missing data. Espe-
cially in large statistical studies some of the elements of the input data matrix
may not be available. For instance, in the ”Welfare map” example mentioned at
the beginning of this book, about 30 per cent of the indicators were missing from
the statistics of some countries submitted to the Word Bank. For the 126 coun-
tries taken to the statistics, only 27 or more of the indicator values of the total
of 39 were given to 77 countries. The rest of the countries had even less given
indicators. Nonetheless, an SOM could be computed for these 77 countries by a
special arrangement. This possibility was built in the programs of SOM PAK in
the following way:

The SOM matrix is dimensioned for the full input data matrix (for all
possible components of the input vectors). However, if some of the com-
ponents of the input vectors are missing, they are indicated by a special
symbol in the data file, and the comparison with the model vectors of the
SOM, when searching for the ”winner”, is only made on the basis of
the given components. Then, only those components of the model vector
in the SOM that correspond to the given input data are updated. Nat-
urally, some information is thereupon missing, but one does not know
what, and this is the best way to proceed, if one wants to take also all
of the incompletely given information into account. In the similar way,
when calibrating the SOM for a country that has only incomplete data
given, only the components of the SOM model corresponding to the given
components of the input vector are taken into account in searching for
the ”winner” and labeling it on the SOM.

The above method was possible in the SOM PAK whose scripts were written
in the C language. The SOM Toolbox, on the other hand, is based on MAT-
LAB, and incomplete vectors cannot be used in the vector- and matrix-valued
variables, at least in the som linit and som batchtrain functions.
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I am now suggesting another method for the SOM Toolbox to deal with the
incomplete input data matrices. It makes use of the conventional som lininit

and som batchtrain functions. The missing elements of the input vectors are
estimated on the basis of the corresponding components in the most similar vec-
tors, where these elements are given.

27.2 Handling of incomplete data matrices in SOM Toolbox

It may now be best to explain the principle by means of a MATLAB script. It
is written completely in the component form; this is recommendable, since the
script that prepares the input vectors can be executed in less than .02 seconds on
a 2 GHz computer. The operations are better understandable in the component
form.

The file welfare2 contains the input variables X and the labels of the coun-
tries.

file = ’welfare2’;

load ([file ’.mat’]) % X, labels

It may be necessary to tell already at this point that the elements 33 through
38 of the data vectors were missing for a number of countries, especially the
poorest ones. In order that this would not cause an imbalance in comparison,
we decided to neglect these components, so instead of 39-dimensional vectors we
will have 33-dimensional ones. It will also turn out that the the handling of the
incomplete data becomes significantly easier after this.

At first we make a binary ”mask” over the X matrix such that the existing
elements are indicated by the values 1, and the missing elements by 0, respec-
tively. However, since we henceforth compute in MATLAB, also the missing
components are given the value 0. This is possible, because the original data
were normalized by having the same variance in every component scale, and
since the values are then real-valued and nonzero, they are not confused with
the ”dont care” value 0.

for i = 1:77

for j = 1:33

if X(i,j) == 0

P(i,j) = 0;

else

P(i,j) = 1;

end

end

end
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Next, for every input vector indexed by i0, we search for a subset of other
input vectors that are most similar to X(i0,:) on the basis of their nonzero
elements. The number of these neighboring vectors is indicated by the param-
eter Dist (in this example, Dist = 4). We do this searching for all of the 77
input vectors. The parameter Ref is a gliding reference value that is large in
the beginning of the search, but it is updated after every magnitude comparison
operation. The vector c is the index vector of all ”winners” that identifies the
corresponding input vectors relative to i0. There are in this example t = 4 of
them.

for i0 = 1:77

Ref = 10000;

Dist = 4;

c = zeros (Dist,1);

Now we start looking for neighbors for each vector indexed by i0. We could
save time by doing that only for incomplete vectors, but winning less than a
millisecond is not important: so we do this for all pairs of elements of the input
matrix. However, an element need not be compared with itself. The variable d

is another gliding reference value. It accumulates the value of the distance, but
for incomplete vectors, only those elements that are nonzero in both X(i0,:)

and X(i,:) must be taken into account. It means that the squares of differences
between the vectors must only be accumulated for nonzero elements: hence the
conditions set up by the masks P. But as a consequence, the number N of squares
of differences must be counted, and the sum of squares must be divided by N.

for i = 1:77

d = 0;

N = 0;

if i ~= i0

for j = 1:33

if P(i0) == 1 && P(i) == 1

d = d + (x(i,j) - x(i0,j))^2;

N = N+1;

end

end

d = d/N;

We have to prepare a sorted list of the nearest vectors, identified by their
indices c(1) through c(Dist) in the descending order. It could be made and
updated by the MATLAB sort instruction. In this example we continue the
programming by the components. The following piece of script also does the
sorting, and the two extra end lines terminate the script written so far.
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if d < Ref

Ref = d;

for k = 2:Dist

c(Dist-k+2) = c(Dist-k+1);

end

c(1) = i;

end

end

end

Next we form the means of those elements in the neighboring vectors that are
supposed to replace the missing elements. As a matter of fact, we were able to
patch all of the missing data by this method. So the script is after that ready to
produce the preprocessed inputs that can be used as regular inputs to the lininit
and batchtrain functions on a normal SOM.

for j = 1:33

if P(i0,j) == 0

Mean = 0;

N = 0;

for k = 1:Dist

if c(k) ~= 0 && x(c(k),j) ~= 0

Mean = Mean + x(c(k),j);

N = N + 1;

end

end

Mean = Mean/N;

x(i0,j) = Mean; % replacement of the missing element

end

end

end

file = ’welfaremap_inputs’;

save([file ’.mat’], ’x’)

27.3 Making the SOM

The estimated input data, stored in the file ’welfaremap inputs’, can now be
used as such in the conventional way in making the SOM. That SOM can also
be calibrated by finding the winners to the inputs x:

file = ’a00pov_inputs_x1’;

load ([file ’.mat’]) % x, names
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U = x1;

for i = 1:33

mi = min(U(:,i)); ma = max(U(:,i));

U(:,i) = (U(:,i)-mi)/(ma - mi);

end

H = 17; V = 17; msize = [V H];

lattice = ’hexa’; % hexagonal lattice

neigh = ’gaussian’; % neighborhood fuction

radius_coarse = [7 1]; % neighborhood radius, coarse [init. fin.]

trainlen_coarse = 50; % cycles in coarse training

radius_fine = [1 1]; % neighborhood radius, fine [init. fin.]

trainlen_fine = 30; % cycles in fine training

smI = som_lininit(U, ’msize’, msize, ’lattice’, lattice, ’shape’, ...

’sheet’);

smC = som_batchtrain(smI, U, ’radius’, radius_coarse, ’trainlen’, ...

trainlen_coarse, ’neigh’, neigh);

sm = som_batchtrain(smC, U, ’radius’, radius_fine, ’trainlen’, ...

trainlen_fine, ’neigh’, neigh);

M = sm.codebook;

som_cplane(’hexa’,msize, ’none’)

norms = sum(M.*M,2);

for u = 1:77

U1 = U(u,:)’;

Y = norms - 2*M*U1;

[C,c] = min(Y);

ch = mod(c-1,H) + 1;

cv = floor((c-1)/H) + 1;

if u==3 || u==4 || u==9 || u==10 || u==37 || ...

u==39 || u==49 || u==71 || u==73 || u==74

shift2 = -.2;

else if u==1 || u==5 || u==6 || u==8 || u==20 || u==21 ...

|| u==35 || u==69 || u==70 || u==72

shift2 = .2;

else

shift2 = 0;

end

end

if mod(cv,2)==1

shift1 = -.22;

else

shift1 = .22;

end

text(ch+shift1-.15,cv+shift2,[names(u,1) names(u,2) ...

names(u,3)], ’FontSize’,8);

end
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filename = ’Welfaremap’;

print(’-dpng’, [filename ’.png’]);

In Fig. 42 we see the new ”Welfare map.”. Remember that this map describes
the situation in 1992, which is quite different from the present one.

Fig. 42. Location of the countries on the new ”Welfare SOM.” For a legend of the
abbreviations, see Table 1 on page 4.

The U matrix (without labeling) of the ”Welfare map” is shown in Fig. 43.
Notice the big ravine between certain poor countries on the right.

Discussion. One must now make a few comments when comparing the new
map with Fig. 1. First of all the new map is rotated left by 90 degrees, but this
is natural, because the SOM can be materialized in any rotated form, without
losing its topographic relations. The form of the present map is a square, while
that of Fig. 1 is rectangular. The square form (msize[17 17]) was necessary,
because in the old format (msize[13 9]), the resolution of the texts on the
som cplane function would have been too poor.The detailed locations of the
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Fig. 43. The U matrix of the new ”Welfare SOM.” Notice the big ravine between
certain poor countries on the right.

countries in the present map also slightly differ from those in Fig. 1. That is
neither alarming, since the input data were not quite the same. The original
components 33 through 38 were completely ignored in this example, since there
were many missing data in them for some countries, and the ”inputting” might
not have resolved them. Remember that some missing components were only
estimated in the present map. Nonetheless, there is much similarity in the maps.
For instance, the locations of the richest (OECD) countries are concentrated
on the same cluster in both maps (here in the lower left-hand corner; in the
old map they were in the upper left-hand corner), and this is understandable,
because the most significant financial indicators like the gross national product
per capita, which are very dominant, were identical in both maps. Among the
missing indicators there were some medical and educational data, which would
have made a difference especially between the poorest countries.
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28 SOMs of symbol strings

Non-vectorial items can be mapped onto the SOM, too

Objective:

Construction of a SOM for strings of symbols is very tricky, because
one cannot use vector-matrix-operations for the computation of similar-
ities, and training is not based on continuous-valued corrections of the
variables. Therefore we cannot use the SOM Toolbox for this task. On
the other hand, the SOM of symbol strings belongs to a larger category of
SOMs of items, in which the geometric distances on the SOM are derived
from the distance matrix of the items.

28.1 Special problems with strings of symbols

As stated above, the SOM of symbol strings belongs to a larger category in which
the SOMs are supposed to reflect similarities derived from the distance matrices
of the input items. One of the most demanding cases is the SOM of human
endogenous retroviruses [65], which is based on precomputed distance matrices
of DNA sequences. Related SOMs have been constructed in bioinformatics e.g.
for sequences of macromolecules in proteins.

The corpora of data in bioinformatics are huge. The scripts for the compu-
tation of such SOMs also tend to be long and complex and are not suitable
for tutorial examples like those presented here. It is not possible to use SOM
Toolbox functions in them, and they have not even been written in MATLAB.

Nonetheless I wanted to include a reasonably simple example of a symbol-
string SOM in this book. The set of input items that I selected was extremely
trivial, namely, a small set of given names of SOM researchers (!). With the
aid of these data I at least hoped to be able to describe some basic concepts
about the strings, such as the distance measure, which is often expressed in the
Levenshtein metric, and computation of averages as so-called medians of strings.
These operations are necessary when we modify the Batch Map algorithm for
non-vectorial data.

On the other hand, one important problem is a proper initialization of the
SOM. In principle it is possible to initialize the SOM by randomly chosen strings,
but significant speedups can be gained if the initial values somehow comply
with the statistics of the input items, and further, if they are provisionally or-
dered. One special operation that we need in initialization is interpolation between
strings.

The worst problem is a tie. However, I must warn you beforehand that
even though the data are simple, the self-organizing process is not. Due to the
shortness of the strings and their small number, all kinds of problems will ap-
peared in training. The worst of them is a tie in matching and selection.

Especially when the strings of symbols are short, as the names usually are,
the set of possible values for the distance between two strings is very small. For
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instance, if the (unweighted) Levensthtein distances discussed next are used,
the possible distances between strings of symbols of length L are 0, 1, 2, ..., L.
Consequences of this are of following types: 1. In matching an input with the
models, there will usually be multiple winners (i.e., a tie between them), and we
have to find a good strategy to break the tie, or select the winner that guarantees
the best ordering. 2. In the basic Batch Map, updating meant that an old model
had to be replaced by the mean of input data mapped into the neighborhood
of the winner. Now it has been shown that we can modify the Batch Map for
strings where we use the median of a set of strings in place of the mean, but
again there can occur ties in the definition of the median.

In large problems like the SOMs of bioinformatics data, due to the long
strings of symbols thereby used, the ties occur more seldom. However, in this
example which was supposed to be very simple, you will actually encounter these
problems often, and therefore I had to invent several tricks to alleviate them.
But do not let these tricks frighten you; at least we shall solve the whole task!

But first we need a similarity measure, or at least some distance measure for
the comparison of strings, and it is discussed in the next subsection.

28.2 The Levenshtein metric for symbol strings

The lengths of the strings to be compared may vary in wide limits, but it is
possible to define a distance between them. This problem was first discussed
in the theory of communications. The statistically most accurate measure of
distances between strings of symbols is the Levenshtein distance [52] (see also
[39], pp. 22-23], which, in its unweighted form, for strings A and B is defined as

LD(A,B) = min{a(i) + b(i) + c(i)}.
Here string B is obtained from string A by a(i) replacements, b(i) insertions,

and c(i) deletions of a symbol. There exists an indefinite number of combinations
of a(i), b(i) and c(i) to do this, and the minimum is sought, e.g., by the following
dynamic programming method, that is shown below as a piece of MATLAB
script.

Actually, since there may occur various types of stochastic errors in strings,
and the probabilities for these errors depend on the occurring symbols, too, a
statistically evaluated measure of distance is more accurate if the various types
of editing operations (replacement, insertion, and deletion) are provided with
different statistical weights p, q and r, respectively. This then results in the
definition of the weighted Levenshtein distance (WLD)

WLD(A,B) = min{pa(i) + qb(i) + rc(i)} ,

where the coefficients p, q and r for the respective types of error may be
obtained, e.g., from the so-called confusion matrix of the alphabet, as the inverse
probability for a particular error to occur.

In the following we use the unweighted Levenshtein distance for simplicity,
and take
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p(A(i), B(j)) = 0 if A(i) = B(j) ,
p(A(i), B(j)) = 1 if A(i) �= B(j) ,
q(B(j)) = 1 ,
r(A(i)) = 1 ,

where A(i) is the ith symbol of string A, and B(j) is the jth symbol of string
B, respectively.

% The script for the computation of LD(A,B)

function levenshtein(A,B)

m = zeros(3);

LA = length(A);

LB = length(B);

LD = 0;

D = zeros(LA+1,LB+1);

for i = 2:LA+1,

D(i,1) = D(i-1,1) + 1;

end

for j = 2:LB+1;

D(1,j) = D(1,j-1) + 1;

end

for i = 2:LA+1,

for j = 2:LB+1,

if A(i-1) == B(j-1),

r = 0;

else

r = 1;

end

m1 = D(i-1,j-1) + r;

m2 = D(i,j-1) + 1;

m3 = D(i-1,j) + 1;

m = [m1 m2 m3];

D(i,j) = min(m);

end

end

LD = D(LA+1,LB+1);

For intance, LD(’erhardt’,’leonardo’) = 4, because ’leonardo’ can be trans-
formed into ’erhardt’ by deletion of ’l’, replacement of ’on’ by ’rh’, and replace-
ment of ’o’ by ’t’ .

This script, the function levenshtein(A,B), now comes in handy, because
it can be called many times at the various stages of computations.
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28.3 The median of a set of symbol strings

In the introduction of learning to a string SOM we first of all encounter the
problem of how to average sets of signal strings. Even if the strings are regarded
as vectors, like one assumes in MATLAB, their ”dimensionalities” change often.
However, in elementary arithmetics we already know how the medianof numbers
is defined: it is a member of the set of numbers that has the same number of
elements which are smaller than and greater than it, respectively. (If there is an
even number of elements, there are two elements that can be called a median.)
We also know how the median is constructed arithmetically: the median is that
number which has the smallest sum of absolute values of differences with respect
to each of the members of the set.

Fron the above we can now generalize the definition of the median for any
items, between which the distance matrix has been defined:

The median of a set of elements is that member in the set, which has the
smallest sum of distances from all the other elements.

Computation of the median of symbol strings. Next we need an algo-
rithm for the computation of the median of a set of symbol strings. Let us call
the symbol strings w(i,:).

The purpose is to find that string Median, the sum of Levenshtein distances
of which from all of the other strings is minimum. For computational reasons we
must define the set of strings as an indexed vertical array of the strings. Let us
recall that only strings of the same length can be represented as a vertical array,
so when in our example the maximum length of a string is 9, the other strings
must be filled in with a suitable number of blanks (’ ’) to define the length 9
for all of the strings. Below are the string data used:

w = [’takashi ’

’leonardo ’

’andreas ’

’argyris ’

’fernando ’

’guilherme’

’erhardt ’

’michael ’

’yoonsuck ’

’heeyoul ’

’francesco’

’alexander’

’hiroshi ’

’patrice ’

’william ’

’kouichi ’

’geoffroy ’

’barbara ’
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’shigeomi ’

’roberto ’

’leticia ’

’rodrigo ’

’nicolai ’

’shinsuke ’

’toshiyuki’];

On the other hand, to execute the function levenshtein(A,B) below, the A
and B must have no blanks, and therefore we need, e.g., the lines A1 = w(a,:);

A = A1(find(A1 =’ ’)); and B = w(a,:); B = B1(find(A1 =’ ’)); be-
low to remove the blanks. The Levenshtein distances are computed by calling
the function LD = levenshtein(A,B), after which the sums of distances from
all of the names to all of the other names are formed, and the sort function
puts the sums to an increasing order.

summa = zeros(25,1);

for a = 1:25,

A1 = w(a,:);

A = A1(find(A1~=’ ’));

for b = 1:25,

B1 = w(a,:);

B = B1(find(A1~=’ ’));

LD = levenshtein(A,B);

summa(a) = summa(a) + LD;

end

end

[MED,med] = sort(summa);

The vector MED contains all of the sums of distances to be compared. It
is possible that among its elements, there exist multiple minima. All of these
median words w will be found and listed as

w(med(find(MED==MED(1))),:)

These words still contain the blanks as they appear in the input data list.
It turns out that in this case there is only one median among these 25 names,
namely, ’hiroshi ’.

With a smaller set of strings, especially of equal lengths, e.g.,

w = [’takashi ’

’andreas ’

’argyris ’

’erhardt ’

’michael ’

’heeyoul ’];
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we may obtain a relatively large set of multiple medians: for this set all of
the medians are

’takashi ’

’andreas ’

’michael ’

’heeyoul ’

This example shows clearly that since the intermediate results are often not
unique, we might run into problems with ordering, especially with short strings
such as the names. That is, the optimal SOM will usually not be unique.

It is to be noted that the medians computed above are members of the set.
This may seem to restrict the averaging method, but actually it only means
quantization, and the SOM using this method can still become topographically
ordered and visually correct-looking.

In [35] I have shown that it is possible to construct a string, the sum of
distances of which from the other strings is minimum, and which does not belong
to the set of given strings. We shall skip it here.

28.4 The most distant strings

An opposite to the median of a set of strings is the string that is the most distant
from all of the other strings. The algorithm for finding all of them is otherwise
identical with the median algorithm, except that when sorting the summa, the
maxima instead of the minima are determined:

[MDIST,mdist] = sort(summa,’descend’);

w(mdist(find(MDIST==MDIST(25))),:)

Again it happened that only one string, namely, ’alexander’ was found to
be the most distant string in the set of 25 names.

28.5 Interpolation between symbol strings

Another operation that is sometimes needed in the SOMs of strings, especially
in their initialization, is interpolation between two strings. It comes in handy if
we enlarge the SOM, for example if we first make a small SOM and then ap-
proximately double its horizontal and vertical dimensions. For the initial values
of the new, interstitial, ”blank” cells of the larger SOM we can take ”averages”
of the neighboring cells of the original SOM and continue training of the new
SOM. Naturally we cannot use any arithmetic averaging, but the distances be-
tween strings are still describable, e.g., by Levenshtein metrics. We may say that
the average of two strings is a string that has a distance from both of the for-
mer, which is half of the distance of the original strings. Because the strings are
quantized entities, we can halve the distance only approximately.

The simplest way to interpolate between two strings is to proceed in the
following way. Consider different strings A and B. If the symbols in the same



144

symbol position in A and B are different, and we make the symbol in one string
identical with the symbol in the other, the similarity of the strings is increased,
in other words, the resulting string has a distance from both of the original ones
that is smaller than the distance between the original strings. We repeat this
operation on randomly chosen different symbols until B has reached a distance
from A that is about half of the distance between A and the original B.

Since we must always find symbols that have the same position in both
strings, we must make changes in the shorter string only. Therefore we shall
rename the strings so that the longer one becomes A and the shorter one B,
respectively.

Let us denote the Levenshtein distance between A and the original B by
LD, and the variable Levenshtein distance between A and the new B by LD1,
respectively. Let x be a randomly drawn symbol position in B. The script for
interpolation reads as follows:

function[LD1] = interpolation(A,B)

LA = length(A);

LB = length(B);

if LB > LA

C = A;

A = B;

B = C;

end

LD = levenshtein(A,B);

LD1 = LD;

while LD1 > ceil(LD/2)

x = floor(length(B)*rand + 1);

if A(x) ~= B(x)

B(x) = A(x);

end

LD1 = levenshtein(A,B);

end

Notice that when we select the symbol position x randomly, we do not obtain
every time different A and B, but we shall anyway continue the random selection
until LD1 = ceil(LD/2). (It is also possible to use the function floor instead
of ceil.)

If A = ’washington’, B = ’lissabon’, the original Levenshtein distance
between them is 7. By the above algorithm we obtain (with a certain random
sequence of x) for the interpolation ’wassanon’, which has the Levenshtein
distance from A equal to 4, and from the original B equal to 3, respectively.
Naturally there may exist a great number of interpolations that fulfill the above
condition, but any one of them will serve our purposes.

The Ordering Index (OI). First we define a very simple criterion of two-
dimensional ordering, which is utilized in the initialization of the string SOM.
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Assume that we have the same number of strings and SOM nodes, and our
objective is to put the strings into the SOM array in such an order that the sum
of Levenshtein distances between all of the closest nodes in the horizontal and
vertical directions is minimum. This sum is now called the ordering index (OI).

For the string SOMs we use here rectangular arrays only, because they are
simple to program, and the visual anisotropy of the map is not important, when
the data are non-vectorial. Moreover we can use simple tabular operations in the
display of the SOM.

Assume that we have 25 names and a 4 by 5 SOM array. Let m(i,j) de-
note a model, which is a string. The script for the computation of the OI is
straightforward:

function[OI] = orderindex(m)

OI = 0;

for i = 1:5

for j = 1:4

c = 5*(j-1) + i;

c1 = 5*j + i;

A1 = m(c,:);

A = A1(find(A1~=’ ’));

B1 = m(c1,:);

B = B1(find(B1~=’ ’));

LD = levenshtein(A,B);

OI = OI + LD;

end

end

for i = 1:4

for j = 1:5

c = 5*(j-1) + i;

c1 = 5*(j-1) + i + 1;

A1 = m(c,:);

A = A1(find(A1~=’ ’));

B1 = m(c1,:);

B = B1(find(B1~=’ ’));

LD = levenshtein(A,B);

OI = OI + LD;

end

end

28.6 Semi-manual initialization of SOMs for symbol strings

In the SOM for symbols, the models are symbols, too. The first problem is how
one should initialize them. There do not exist any principal components for
non-vectorial variables, and it might seem that choosing random strings for the
models would be the only possibility. Nonetheless we would like to have even an
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approximative order to the array, in order to speed up the computations and to
guarantee better ordering results.

Estimation of initial values from the Sammon projection. One method
used by us earlier was to first construct a nonlinear projection of the strings. In
the Sammon mapping [76], each string (or other symbolic item) is represented by
a point on a two-dimensional plane, and analytically as a Euclidean vector x(i).
Let the distance of two symbols s(i) and s(j) be d(i, j). The idea in the Sammon
mapping is to to approximate the d(i, j) by the vectorial distances ||x(i)−x(j)||
of the corresponding points on a two-dimensional plane. Only an optimal solu-
tion is generally possible, in which the approximation error is minimized. In the
original method, the optimum is sought by a gradient-descent method of the
error function. In our case we must start from the distance matrix of symbolic
items. Then it is possible to pick up at random two items (points), and since
their vectorial difference in general does not comply with the d(i, j), to move
these points (symmetrically) towards or away from each other to match d(i, j).
These corrections must be repeated for other randomly chosen pairs of items and
making only small corrective steps, and this may require hundreds of thousands
of correction operations. After that, the resulting two-dimensional Sammon pro-
jection may be copied, e.g., to the som cplane of a suitable size and form. This
still requires some manual fitting. Naturally this is still a nonlinear projection,
no SOM.

However, it has turned out that in this method, also the initial values of the
Sammon mapping ought to be roughly ordered, not only because its will speed
up the computations, but also to guarantee a good ordering result.

Especially for large SOMs, automatic initialization methods are needed.

28.7 The GENINIT projection method

In this subsection we introduce a simple and fast projection method. First,
the four strings that are most distant from the other strings and also
from each other are searched. After that, the horizontal and vertical co-
ordinates of the items in the projection are determined on the basis of
distances from these four points.

Special coordinate systems with focal points. Before we introduce the
new projection method for strings, it may be useful to remind about certain
generally known special confocal coordinate systems in geometry. Consider a
Cartesian (x, y, z) space where two focal points are defined, say, at x = −1, y =
0, z = 0 and x = +1, y = 0, z = 0. If we define a coordinate surface as the set
of points, whose difference of distances from the two focal points is constant, we
find out that this surface is a cylindrical hyperboloid, symmetric with respect
to the x axis. However, if we define the coordinate surface as the set of points,
whose difference of squares of distances from the two focal points is constant, we
obtain a surface that is a plane perpendicular to the x axis. With different values
of the constant we obtain a family of such coordinate surfaces.
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Now we define two families of coordinate surfaces of the latter type. Imag-
ine a sphere, similar to the globe, and two pairs of focal points, one pair placed
at the two poles, and the second pair on the equator, at opposite sides of the
globe. Then imagine a set of latitudes and another set of longitudes and their
crossing points. If we want to project these crossing points onto a plane that
passes through the two pairs of focal points, we define two families of coordinate
surfaces: one defined as constant differences of squared distances from the poles,
and second coordinate system as constant differences of squared differences from
the equatorial focal points, respectively. All of these distances are measured di-
rectly through the three-dimensional space, not along the surface of the globe.
When the crossing points of the latitudes and longitudes are plotted on a two-
dimensional plane using these two coordinates, we obtain the image shown in
Fig. 44.

Fig. 44. The GENINIT projection of a globe onto a plane, by plotting the latitudes and
longitudes using differences of their squared distances from two pairs of focal points,
one pair of focal points placed to the poles, and the second pair to the opposite points
of the equator, respectively.

Application of the focal-point principle to strings of symbols. Of
course the strings of symbols do not behave like Euclidean vectors, and the
space of strings is not three-dimensional, but we may see here a possibility to
produce projections of items for which only the mutual distances can be defined.
First we look for strings that are most distant from each other, and which also
would have as large a sum of all strings as possible. We find four such strings,
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all of which have the distance of nine units from each other, and which also
happen to have the largest sums of distances from the other points. They are:
alexander, guilherme, toshiyuki and francesco. Their sums of distances
from all of the other strings are 193, 190, 189, and 185, respectively. Let us call
these string as focal points.

From these four strings we select two pairs, e.g., (6,11) and (12,25). The
Levenshtein distance of two items a and b is denoted D(a,b).

First we sort the differences of distances from the first pair of items and
obtain the sequences of ordered values H and their indices Kh, respectively. Let
us call these the horizontal coordinates of the items on the display. In the same
manner we sort the differences of distances from the second pair of items and
obtain the second sequences of ordered values V and their indices Kv, which we
call the vertical coordinates of the items on tte display. The question is, whether
we should use the true distances (H,V) or the sorting indices (Kh,Kv) as the
coordinates. In the geometric example we used the squares of distances, but
since we are mainly interested in the topographic relations of the strings, we
shall choose the indices. There will be an extra benefit of this choice, as will be
shown shortly. Neither is there then any reason to square the differences, since
the strings are not Euclidean entities anyway. So, first we do the sorting:

I1 = 6;

J1 = 11;

[H,Kh] = sort(D(:,I1) - D(:,J1));

I2 = 12;

J2 = 25;

[V,Kv] = sort(D(:,I2) - D(:,J2));

Let us now plot the names on a two-dimensional plane using the coordinates
(Kh,Kv). The results are shown in Fig. 45.

xScale = 7/24;

yScale = 8/24;

for i = 1:25,

x(i) = find(Kh == i);

y(i) = find(Kv == i);

end

plot(x,y,’k.’);

% Construction of the texts T for the names

A = ’abcdefghijklmnopqrstuvwxyz’;

for i = 1:25,

T = A(w(i,1));

for j = 1:p(i)

T = [B A(w(i,1+j))];

end

if i == 1 || i == 2 || i == 8
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Fig. 45. The GENINIT projection of the 25 names based on their differences of Lev-
enshtein distances from four items that are most distant from each other.

text(x(i),y(i),T,’horizontalalignment’, ...

’center’,’verticalalignment’,’bottom’);

else if i == 11

text(x(i),y(i),T,’horizontalalignment’, ...

’left’,’verticalalignment’,’top’);

else if i == 6

text(x(i),y(i),T,’horizontalalignment’, ...

’right’,’verticalalignment’,’top’);

else

text(x(i),y(i),T,’horizontalalignment’, ...

’center’,’verticalalignment’,’top’);

end

end

end

end

xlabel(’Kh’,’FontSize’,12);

ylabel(’Kv’,’FontSize’,12);
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Compression of the GENINIT projection. One of the benefits of using
sorting indices in defining the coordinates of the GENINIT method is that the
plot becomes more even, when compared with the use of true distances. How-
ever, an even bigger benefit can be seen upon closer inspection of the plot: the
image is divided into an 25 by 25 array onto which the items are projected, and
there is only one item on each row and in each column! Such a sparse 25 by 25
matrix can be compressed, e.g., by the find function into a 5 by 5 array, where
the items are still coarsely ordered. This kind of an array is shown below. It has
been made as a tabular array of LaTeX for convenience.

fernando alexander leticia michael geoffroy

francesco leonardo barbara erhardt william

takashi andreas heeyoul nicolai guilherme

rodrigo patrice roberto kouichi shinsuke

yoonsuck argyris hiroshi toshiyuki shigeomi

The compressed GENINIT initialization of the 25 names.

.

The ”small SOM.” In order that we can call the following case an ”SOM”,
at least the neighborhood function must somehow be involved with its training.
In a square array of 5 by 5 models, with one square dedicated for every input
item, the neighborhood function shall be equal to 1 in a neighborhood set con-
sisting of the closest neighbors, and 0 outside it. In the inside of the array the
neighborhood set has 3 by 3 nodes, and fewer at the borders. Like in the batch-
training SOM, the middle element of the neighborhood set is updated by the
”average” over the neighborhood set, which in this case, for strings of symbols,
is defined as the median of the strings in the neighborhood set. Actually the
updating operation is a bit more complex, ”supervised,” in order that the con-
vergence is guaranteed, as will be seen next.

Supervised training of the ”SOM.” Notice that in this case we have no
external inputs, because all of the inputs are already there in the map as the
initial values of the models, and if we would input the same items again, they
would only identify themselves as the ”winners.” So in this example we do not
have lists of ”winners” associated with the nodes, only the models themselves. If
we would replace the old item at a node by the median of the due neighborhood,
we would generally create a new copy of an item and lose one item, so after
that we would not have all of the 25 names left in the map any longer. The only
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sensible thing to do then is to swap the median and the contents of the node
that we are processing. But even then it is not sure that the global degree of
order in the SOM is increased, because increasing the order in a neighborhood
may disturb the order elsewhere in the map. So we must do the swapping only
conditionally, provided that the global index of order OI is thereby decreased.
The following script will guarantee that. Before applying this script, we need to
execute the makemedian(w) function to obtain the median w(med(1),:). (Note
that aux is a temporary storage used in swapping.)

oldw = w;

oldOI = orderindex(m);

aux = w(med(1),:);

w(med(1),:) = w(v,:);

w(v,:) = aux;

m = w;

OI = orderindex(m);

if OI < oldOI

w = w;

else

w = oldw;

end

m = w;

The tabular array below represents the ”SOM” array after supervised train-
ing. While the order of index with the original, randomly ordered array was 278,
and in the compressed GENINIT array it was 264, after 1000 supervised training
step it was decreased to 248. However, there may still exist several alternatives
for the (local) optima of ordering, and the optimal constellation of the strings
seems to be very vague, also depending from which direction we look at the pro-
jection. Anyway, this 5 by 5 array may now serve as a starting point for the
training of an enlarged SOM.

nicolai hiroshi takashi fernando alexander

argyris heeyoul barbara erhardt geoffroy

andreas roberto leonardo william guilherme

rodrigo francesco leticia michael shinsuke

patrice yoonsuck kouichi toshiyuki shigeomi
.

The ”SOM” array after supervised training.
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28.8 Computation of a genuine SOM for strings of symbols

As said, we have earlier succeeded in producing ordered maps starting with ran-
domly generated strings as initial values of the models, but then we have had
significantly larger data bases for the input items. Also the initialization meth-
ods have been somewhat different from those discussed in this book. Here we
have introduced a simple and rather straightforward method for automatic ini-
tialization. Since this initialization is coarsely ordered, too, the final training
is expected to take place significantly faster. At least it seems better than the
semi-manual Sammon-map initialization, and its is well compressed.

Initializing a large SOM for this example. Now we want to increase
the size of the SOM array. The added 16 interstitial nodes will be initialized by
interpolation, and an extra garbling is performed on them. This garbling might
not be necessary, but since we are now demonstrating a genuine SOM process,
a garbling is supposed to give an extra proof for that the algorithm is really
capable of ordering the strings topographically. The 9 by 9 initialized array is
shown in the tabular array below.

nicoli nicyrisc arygyris ardyeiz andreasu axodrego rodrio adrigo patrce

niceoshi nrrohal vegyrul aeeeyil rjndrrto aoanco foarqcgo paonto pooniece

hyiroshi herfosul heeyonl reeetl robdrto ranceo francesyo yognrto yoonsjuck

tirashoi harosrt berbouoa neenara reonro reanaaia fruicea yoeocia younrhi

takahi xakbsra brbara lernarl eonardo letnaa lgeticia koticixa kduichi

aknahi eahwadt brharnra legarda gillaad wexlaea mechceam kohiel osichi

fecrnando ehnadt erhagdt wiardt qilliam wicliell mictael mshiel toshiyuki

lexando glhfladt gehnfrdt gullrt guliam siliel shcnpael mmsgiul sshioui

alfxander gleyanoy geoxfroy guilfroyc guilherme suislseke shinsuke shingsuke uhigeomi

Initialization of the SOM of 25 names on a 9 by 9 array using interpolation of
the interstitial position. For more random initial values, the strings have been
garbled.

.

The Batch Map for strings. The final SOM algorithm to be constructed
is very much similar to the ”Batch Map,” where instead of the mean over the
winner lists in the neighborhood of a node, medians of the strings in the same



153

neighborhood lists are used to replace the old values of the strings in the nodes.
However, since the strings are discrete entities and their domain of values is
rather narrow, there often occur ties, i.e. the distances to be compared are often
equal. The ties may result (1) in the winner search, (2) in the identification of
the medians, and (3) when calibrating the SOM, or labeling the best-matching
nodes with standard strings, or strings with known identity.

A tie occurs very frequently if the strings are short like the names in this
example. The ties are most severe if the comparisons are based on unweighted
Levenshtein distances. If the strings would be obtained, say, in speech recog-
nition, the probabilities for the various types of error (replacement, insertion,
deletion) would be different even for each symbol separately, and the weighted
Levenstein distances were used, the probability for a tie would then be signifi-
cantly smaller. The example we are now discussing is one of the worst, because
the names used as data are short and have a unique form.

First we present a couple of methods to break the ties.

Comparison with several nodes. In winner search, when the tie is due,
one could switch from the search of a single winner to the identification of that
set of neighboring nodes, which have the smallest average distance to the input.
This strategy resembles the winner-search criterion of Heskes and Kappen [23].

Of cause this kind of a tie break causes complications in programming, and
is different at the borders of the SOM array compared with the middle of the
array. Also one must be prepared, in principle at least, for that if the first choice
of comparison set does not yet break the tie, more nodes must be involved in
comparison, and so on. So let us not use this method in this rather artificially
constructed example which had to be kept as transparent as possible.

Random choice for tie breaking. Since the determination of the win-
ner in terms of average distances from a neighborhood of the target node is so
complicated, one is tempted to look for simpler alternatives for tie break. One
of them is the random choice from the ties. Another speculation is to give the
preference to either longer or shorter strings. In our numerous experiments we
have seen no benefits of favoring the candidates on the basis of the lengths of
the strings, whereas the random tie break is almost as good as the enlargement
of the neighborhood in winner search, especially if we are not dealing with sta-
tistical classification of strings. In the present demonstration we thus use the
random choice between the ties in selecting the winner, as well as in searching
for the median in a neighborhood set in updating the SOM.

Definition of the winner lists at the nodes. In the Batch Map for
vectorial data we could use a single accumulator buffer associated with every
node of the SOM. In these buffers we immediately formed the sums of inputs
mapped to that node. A counter of the number of addends was also needed at
each node. This method is not possible in the Batch Map for strings, because
we do not form sums and means of the mapped inputs but their medians. In the
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first phase of computation we must therefore keep up replica of all of the input
strings that are mapped to the winner nodes. These replica, in this example, are
stored in 81 winner lists associated with the SOM nodes. We must also store the
lengths of their occupied parts which are given by the auxiliary variables len for
each node. In this example, for safety, 200 locations have been reserved for each
winner list, although it turns out that we will need only a fraction of them.

However, we now run into a particular problem. When defining the array
for the winner lists, we have used one index to denote the node, and the
second index to define the position in the winner list. But the strings
to be stored are formally vectors of symbols, with as many components
as there are symbols in the string, and for that we would need the third
index. There is an option in MATLAB to use three-dimensional arrays,
as we have seen in the QAM example, but there exists a much easier
and simpler solution to this problem. We need not store the strings as
such in the lists but only the indices of these items (i.e., pointers), the
index being identifiable by its order when this string was generated. We
define this index as v = 81*(repet-1) + s, which is a scalar number.
The original strings can be restored any time on the basis of this index.

% Construction of the winner lists at all nodes

winlist = zeros(81,100);

len = zeros(81,1);

Garbling of input data. We want to make a genuine experiment, where
the training data of the SOM are randomly distributed variables. Since we are
dealing with an artificial example, we simulate the erroneous input strings by
generating artificial editing errors (replacements, insertions, and deletions) to the
set of standard input strings. We could have garbled those 25 original names,
but it seems that we have a better fidelity with real examples if we use gar-
bled versions of the 81 strings used as initial values of the SOM, as shown in
the tabular array on p. 148. We generate a great number of garbled inputs au-
tomatically. However, it would be valuable if the streams of random numbers
were repeatable for experimenting and diagnosing. In MATLAB there are spe-
cial options for making repeatable random-number streams. Since we need not
have a high quality of random numbers in this demonstration, we use the old
initialization of the random-number generator using, e.g., the simple command
line rand(’seed’,20000). The MATLAB depreciates this method, but we use
it here for simplicity.

When we generate garbled versions of the strings, we identify each version
with the running index v of each of the 81 words for a reason that will be ex-
plained shortly. We decided to make exactly three random errors to each word.
The letter to be garbled in the word is defined by its position p. The error type
errtype can be a replacement, insertion, or deletion of that letter, with equal
probability for each error type. A set of 81 thrice garbled names is repeated three
times, each time having a different random garbling. In this way we obtain 243
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training patterns at each cycle. This training episode, with different randomiza-
tion, is repeated 50 times; so the number of random training patterns was in
total 12’150.

% Generation of garbled input strings

ABC = ’abcdefghijklmnopqrstuvwxyz’;

M = M0;

for cycl = 1:50 % cycles belonging to teaching

winlist = zeros(81,25); % winlists reset at each cycle

len = zeros(81,1);

for repet1 = 1:3 % three statistically independent input sets

for s = 1:81 % one of three input sets

v = 81*(repet1-1) + s;

A1 = M0(s,:);

A = A1(find(A1~=’ ’));

for repet2 = 1:3 % each input set is garbled thrice

P = floor(length(A)*rand) + 1;

errtype = floor(3*rand) + 1;

Lett = ABC(floor(26*rand) + 1);

if errtype == 1

A(P) = Lett;

end

if errtype == 2

C = ’’;

if length(A)<9

for i = 1:P

C(i) = A(i);

end

C(P+1) = Lett;

if length(C)<9

for i = P+2:length(A)+1

C(i) = A(i-1);

end

end

A = C;

end

end

if errtype == 3
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A(P) = ’’;

end

end % end of repet2 (garbling)

A2(v,:) = ’ ’;

for P = 1:length(A)

A2(v,P) = A(P);

end

As you may have noticed, the trailing blanks from the strings A have now
already been removed, and we continue by winner search:

% Matching with SOM nodes and making winnerlists

for j = 1:81

B1 = M(j,:);

B = B1(find(B1 ~= ’ ’));

LD = levenshtein(A,B);

D(j) = LD;

end

[W,w] = sort(D);

Random tie break in sorting. The function sort produces a sorted list
of the matches. In the case that there are n ties (minima) in sorting, we choose
the index r among them randomly, increment the corresponding list length, and
store the winner.

n = length(find(w==w(1)));

r = floor(n*rand) + 1;

len(w(r)) = len(w(r)) + 1;

winlist(w(r),len(w(r))) = v;

end

end

Indices of the neighborhoods. The winner lists have now been completed
in this way. Next we define the neighborhood sets around the nodes c.

% Definition of neighborhoods

for c = 1:81

cj = floor((c-1)/9) + 1;

ci = mod(c-1,9) + 1;

if c == 1

c1 = [1 2 10 11];

lenc = 4;

end

if c == 9

c1 = [8 9 17 18];
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lenc = 4;

end

if c == 73

c1 = [64 65 73 74];

lenc = 4;

end

if c == 81

c1 = [71 72 80 81];

lenc = 4;

end

if cj == 1 && ci > 1 && ci < 9

c1 = [c-1 c c+1 c+8 c+9 c+10];

lenc = 6;

end

if cj == 9 && ci > 1 && ci < 9

c1 = [c-10 c-9 c-8 c-1 c c+1];

lenc = 6;

end

if ci == 1 && cj > 1 && cj < 9

c1 = [c-9 c-8 c c+1 c+9 c+10];

lenc = 6;

end

if ci == 9 && cj > 1 && cj < 9

c1 = [c-10 c-9 c-1 c c+8 c+9];

lenc = 6;

end

if ci > 1 && ci < 9 && cj > 1 && cj < 9

c1 = [c-10 c-9 c-8 c-1 c c+1 c+8 c+9 c+10];

lenc = 9;

end

Computation of the medians and their substitution to the nodes.
The following pieces of script need a very detailed explanation. First we define
the running indices of the neighborhoods, for each map node c separately, the
indices relating to the original SOM. Notice that the indices v of the winner
lists are only numerical indices of the true strings that were given in A2(v,:)

earlier. The true strings also contain a number of blanks to make all strings
9 symbols long. The sum of distances of strings in each sublist in a particular
neighborhood from the strings in all other sublists in the same neighborhood
are computed. But we cannot be absolutely sure whether all these sublists are
nonempty, and therefore we have to use the condition if v>0 . Notice also that
the sum of distances from all elements in one list to all elements in all of the
other lists in the neighborhood is only related to index aof the first sublist, and
therefore the sums to be compared are components a of vectors summa.
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We found out that the random tie breaking was not necessary in this final
training, due to the big length of the winnerlists and all-random repetitions.

% Computation of medians

summa = zeros(length(c1),1);

for a = 1:length(c1)

for z = 1:len(c1)

v = winlist(c1(a),z);

if v>0

A1 = A2(v,:);

A = A1(find(A1 ~= ’ ’));

end

for b = 1:length(c1)

for z = 1:len(c1)

v = winlist(c1(b),z);

if v>0

B1 = A2(v,:);

B = B1(find(B1 ~= ’ ’));

LD = levenshtein(A,B);

summa(a) = summa(a) + LD;

end

end

end

end

end

end

[Med,med] = sort(summa);

mediaani(c,:) = M(med(1),:);

end

M(c,:) = mediaani(c,:);

end

end

Now all of the 50 training cycles have been completed. The training was
made to continue by repeating similar training cycles until the convergence of
the algorithm was satisfactory. This time no exact convergence was expected,
since new random garbling of the inputs was carried out for all of the 50 training
cycles, and the inputs were not the same during all cycles.

Calibration of the nodes. Next we have to calibrate the nodes of the SOM.
This we want to do using the original, errorless names as test strings, and we
input them looking for the winners. The result shown in the tabular array below
almost completely coincided with the initialization, although all training strings
were three-times garbled versions. However, we lost one name, shigeomi, which
was replaced by nicolai.
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Discussion. Although the construction of the SOM for symbol strings con-
tained many complicated phases, the present problem was still only a ”toy exam-
ple.” For one thing, the density function of the erroneous input strings, which
was defined artificially, was almost ideally uniform. This was reflected in the
almost rectangular constellation of the calibration items on the map. It is plau-
sible that with longer, statistically distributed strings and a bigger input data
base, not only the ties would occur less often, but the SOM would also reflect
meaningful clusters of data more clearly.

In the case that the dissimilarities of the data items would be defined directly
by distance matrices, whether theoretical, or computed by approximate methods
like the FASTA method, many phases described above could be followed.

nicolai . argyris . andreas . rodrigo . patrice

. . . . . . . . .

hiroshi . heeyoul . roberto . francesco . yoonsuck

. . . . . . . . .

takashi . barbara . leonardo . leticia . kouichi

. . . . . . . . .

fernando . erhardt . william . michael . toshiyuki

. . . . . . . . .

alexander . geoffroy . guilherme . shinsuke . nicolai
.

Genuine SOM of 25 names on a 9 by 9 array.
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29 The Supervised SOM

Simple supervised training of the SOM

Objective:

The original SOM is definitely an unsupervised learning method. There-
fore it does not classify input patterns at statistically optimal accuracy.
However, it can be made to perform better; the first remedy used in appli-
cations was to add class information to the input patterns, whereupon the
decision borders between the classes were emphasized almost optimally.

It has been stated generally that the SOM is an unsupervised classification
method. Its main operation is a nonlinear projection from a high-dimensional
data space onto a usually two-dimensional array of nodes. Therefore it is not
expected that it would simultaneously cluster input data items at an optimal
accuracy, when referred to the probabilistic methods of classification. Nonethe-
less its computation is very easy, and with some extra means it can be made to
classify objects at a near-optimal accuracy. We noticed that already in our first
attempts to recognize speech by phonemes around 1984 (cf. [36]).

In order to make an SOM to operate in a supervised manner, we have to
give class information already in connection with the input data. The simplest
way to do this is to add extra components to the input pattern vector that
indicate the class-affiliation of the input pattern. If X is the input pattern, then
its class-affiliation is defined by a class vector C that has as many components
as there are classes. Usually the class vectors are unit vectors that have a 1 in
the component showing the class, and 0 elsewhere. The combined input vectors
of the SOM are then of the form U = [X C].

The effect of the unit vector part is to increase the clustering tendency of
those input vectors that belong to the same class, and to make vectors of foreign
classes expel each other. When the X part and the C part are weighted suitably,
one can optimize the class separation of the samples. We demonstrate this with
two classes of two-dimensional artificial vectors that obey the Gaussian distribu-
tions but overlap significantly. One of the classes is centered at (−2,−2) and has
the standard deviation equal to 1, while the second class is centered at (+2,+2)
and has the standard deviation equal to 2.

The script of the Supervised SOM is the following. It starts with the defini-
tion of the simulation inputs X and C. For the latter we give the values −3 and
−3, respectively (to put a little more weight to the class parts). Then, for a refer-
ence, we generate 1000 random samples Y of input data in order to delineate the
form of the input density function. These samples are plotted to the left-hand
subimage of Fig. 46, but for graphic reasons, the Gaussian distributions have
been cut at the framing when drawing the left-hand subimage. (The Y values
are not involved in the computation of the SOM.)
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X = zeros(10000,2);

C = zeros(10000,1);

Y = zeros(1000,2);

for i = 1:10000

if rand <.5

C(i) = 3;

X(i,:) = randn(1,2) - 2;

else

C(i) = - 3;

X(i,:) = 2*randn(1,2) + 2;

end

end

for i = 1:1000

if rand <.5

Y(i,:) = randn(1,2) - 2;

else

Y(i,:) = 2*randn(1,2) + 2;

end

end

Y = Y(find(Y(:,1)>-4 & Y(:,1)<-5 & Y(:,2)>-4 & Y(:,2)<5),:);

This was the input-data part of the script. Next the pattern parts X and the
class parts C are concatenated into combined input vectors U to the SOM:

U = zeros(10000,3);

for u = 1:10000

for v = 1:2

U(u,v) = X(u,v);

end

U(u,3) = C(u);

end

Now we are ready to compute the SOM:

smI = som_lininit(U,’msize’,[7 7],’lattice’,...

’hexa’,’shape’,’sheet’);

smC = som_batchtrain(smI,U,’radius’,[3 1],...

’trainlen’,50);

sm = som_batchtrain(smC,U,’radius’,[1 1],...

’trainlen’,200);

We are plotting the models as points, which are connected with auxiliary
lines that link the nodes that are horizontal or vertical neighbors in the SOM.
For the plotting instructions we must re-dimension the M vectors.

We also want to identify those models , which belong to class C1. For that
we use the command M1 = M1(find(M1(:,3)>0),:); below. We mark these
models by an asterisk.
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The plot instructions end up with ...-5,-4,’k.’,5,5,’k.’ to set up sim-
ilar scales to the two subimages.

M = sm.codebook;

M1 = M;

M1 = M1(find(M1(:,3)>0),:);

M = reshape(M, [7 7 3]);

for k=1:2

subplot(1,2,k);

if k == 2

plot(M(:,1,1),M(:,1,2),’k-’,M(:,2,1),M(:,2,2), ...

’k-’,M(:,3,1),M(:,3,2),’k-’,M(:,4,1), ...

M(:,4,2),’k-’,M(:,5,1),M(:,5,2),’k-’, ...

M(:,6,1),M(:,6,2),’k-’,M(:,7,1),M(:,7,2), ...

’k-’,M(1,:,1),M(1,:,2),’k-’,M(2,:,1), ...

M(2,:,2),’k-’,M(3,:,1),M(3,:,2),’k-’, ...

M(4,:,1),M(4,:,2),’k-’,M(5,:,1),M(5,:,2), ...

’k-’,M(6,:,1),M(6,:,2),’k-’,M(7,:,1), ...

M(7,:,2),’k-’,M1(:,1),M1(:,2),’k*’,-5,-4,’k.’,5,5,’k.’);

end

if k == 1

plot(Y(:,1),Y(:,2),’k.’,-5,-4,’.’, 5,5,’.’);

end

end

file = ’SupervisedSom’;

print(’-dpng’,[file ’.png’]);

Since the artificial training inputs and model vectors (not counting the class
information) were two dimensional, we can easily show their constellation in
the right-hand subimage of a two-dimensional diagram, Fig. 46. Class C1 is
emphasized by asterisks. We can see that the SOM network is stretched between
the classes C1 and C2. If we had been able to plot the SOM three dimensionally,
we could have seen that C1 would pop up from the plane by 3 units and C2

would be sunken by 3 units, respectively.
Especially with higher-dimensional input data the organization of the SOM

would be improved due to the C parts of the training inputs.
A new, unknown vector does not yet have the C part, and it must be classified

(i.e., by determination of the winner node with known classification) based on
its known X part only. Its classification result is found in the C part, indicated
by the maximum value of the component that was supposed to be equal to 1 in
the unit vector.
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Fig. 46. This picture shows the first two components of the input and model vectors
of a Supervised SOM. The third component represents the classification of the model
vectors, and is not shown in this picture. In the left-hand subimage, the distribution
(with 1000 samples) of the input vectors is demonstrated. In the right-hand subimage,
the SOM model vectors after 10,000 training steps are shown; they are situated at the
crossings of the auxiliary lines. There are in all 7 by 7 model vectors, and they have
been adapted to the input density function. The models corresponding to the classes
C1 and C2 have further been expelled automatically from each other in training, due
to the different class vector parts of the input vectors, which impose bigger vectorial
differences between the vectors of different classes. In the right-hand subimage, the 21
model vectors of class C1 have been emphasized by an asterisk, and the rest of the
model vectors belong to class C2. The model vectors of the two classes are separated
by a bigger gap between them. However, in the automatic classification of unknown
input vectors, the classification result is mainly determined by those model vectors that
are closest to the discrimination limit (between the model vectors of class C1 and class
C2), i.e., those points that have been labeled by the asterisk or not. Cf. the Learning
Vector Quantization to be discussed in the next section.)

Discussion. The Supervised SOM was the first supervised algorithm in the
SOM category, and it was used in the demonstration of typing out text from
unlimited Finnish and Japanese speech (”Phonetic Typewriter.”) In a later series
of experiments the Supervised SOM was replaced by various versions of Learning
Vector Quantization algorithms (cf. the next section). For best class separation
it would be necessary to experiment with different sizes of the C parameters.
Notice that if the Learning Vector Quantization is used, there will be no C parts
any longer.
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30 The Learning Vector Quantization

Error-controlled supervised training of the models

Objective:

There are two functions lvq1 and lvq3 in the SOM Toolbox, which are
related to the SOM but differ from it in two important aspects. Unlike
the SOM which is definitely an unsupervised learning method, these two
functions belong to supervised learning methods; they are called Learn-
ing Vector Quantization. They have been designed for near-optimal class
separation, but the models they construct are not topographically ordered.
They just describe class density functions like the codebook vectors in k-
means clustering, but normally their objective is to define a near-optimal
separating surface between two classes.

Although we have seen that the SOM is able to carry out a classification of
the input items, nonetheless we must say that the classification accuracy is not
as good as for special classification algorithms, say, the ones that are based on
the Bayes theory of conditional probabilities. On the other hand, like we saw
in the fourth example that dealt with the classification of mushrooms, the SOM
was able to display the roles of the individual models in approximating the forms
of the class distributions.

Now we switch to another class of algorithms that were developed concur-
rently with the SOM. They are called by the generic name Learning Vector
Quantization (LVQ), and there are at least three different kinds of them, LVQ1,
LVQ2 and LVQ3, which differ from each other in minor details of the training
process. First we introduce the LVQ1, which implements the basic idea in re-
duced form.

The Bayesian decision borders. The problem of optimal decision in sta-
tistical pattern recognition is basically discussed within the framework of the
Bayes theory of probability. Assume that the input data vectors x ensue from
a finite set of sources or classes {Sk}, and the distributions of the latter are
being described by the conditional probability density functions p(x|x ∈ Sk). In
general, the density functions of the classes overlap, which is reflected in clas-
sification errors. The objective in statistical pattern recognition is to minimize
these errors. Without strict and complete discussions, it is simply stated that
the minimization is made by introducing the discriminant functions

δk(x) = p(x|x ∈ Sk)P (Sk) .

Here P (Sk) is the a priori probability of class Sk. Then the unknown samples
xi are classified optimally (i.e., the rate of misclassification errors is minimized
on the average), if the sample xi is decided to belong to class Sk when

δc(xi) = maxk{δk(xi)} .
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To illustrate what these equations mean, let us look at Fig. 47. We are demon-
strating the classification of scalar-valued samples x. There are three classes S1,
S2 and S3. They are defined on the x axis by three Gaussian-formed discriminant
functions δ1(x), δ2(x), and δ3(x), respectively. The optimal Bayesian borders are
indicated by dotted lines, and they divide the x axis into three zones. In the first
zone the discriminant function δ1(x) has the largest value, and in the second and
third zone, δ2(x) and δ3(x) are largest, respectively.

Fig. 47.Distributions of the scalar samples in three classes S1, S2 and S3, and definition
of the due Bayesian borders.

A preliminary example. The idea of the Learning Vector Quantization
(LVQ) may become clearer if we first illustrate it with a simple example. Consider
Fig. 48, which shows the density functions (Gaussian) of two overlapping classes.

Fig. 48. (a) Small dots : Superposition of two symmetric Gaussian density functions
corresponding to the classes S1 and S2, with their centroids shown by the white and
black cross, respectively. Solid line: the Bayes decision border. (b) Large black dots:
model vectors of class S1. Open circles: model vectors of class S2. Dashed line: Bayes
decision border. Solid line: decision border in the Learning Vector Quantization. (From
[39].)
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The samples are two dimensional, with their values denoted by x = [ξ1, ξ2].
These distributions are plotted in Fig. 48(a) as small dots. In the Bayesian theory
of probability, these distributions would be separated optimally, with the mini-
mum number of misclassifications, if the separating curve would be a circle. Now
the essential policy, illustrated in Fig. 48(b), is to place a number model vectors
mi = [μi1, μi2] into the distributions of both classes such that the class borders
are defined by those points on the [μi1, μi2] -plane that have equal distances from
the closest model vectors of each class. The mi will be assigned permanently to
either class S1 or class S2. The exact values of these models are determined in
the supervised learning by the LVQ algorithm.

30.1 The Learning Vector Quantization algorithm LVQ1

Initialization. Selection of the number of codebook vectors (models) in the
Learning Vector Quantization into each class follows similar rules as determin-
ing the number of models for the SOM. As a matter of fact, a proven policy is to
carry out first the computation of an SOM with all of the tentative model vec-
tors assigned into the same class. When the SOM models have acquired steady
values with the final neighborhood radius, the models are calibrated by the class
symbols. After that the topographic order acquired in the SOM training process
is forgotten, and the training continues from these values, regarded as the intial
values for the LVQ algorithm. By the above method we also obtain an approxi-
mately optimal number of models in each class, which may not be the same for
all classes, due to the different forms of the density functions of the classes.

The LVQ1. The LVQ1 algorithm contains the Learning Vector Quantization
idea in the simplest reduced form. We cannot present its mathematical derivation
here because of space limitations, and since this is not a mathematical textbook.
However, the principle is closely related to the k-means classification:

Give the training data one at a time together with its classification. If the
winner model has the same classification, increase the matching of the
model with the input. If the classifications disagree, reduce the matching
(i.e., carry out a correction).

Let us now first write the training equations in the stepwise recursive form;
later we will show that the batch training procedure is possible for the LVQ1,
too.

mc(t+ 1) = mc(t) + α(t)[x(t)−mc(t)]

if c is the index of the winner model and x and mc belong to the same
class,

mc(t+ 1) = mc(t)− α(t)[x(t)−mc(t)]



167

if c is the index of the winner model and x and mc belong to different
classes.

Here α(t) is the learning rate that must fulfill the condition 0 < α(t) < 1,
and α(t) is made to decrease monotonically with time: for instance, α(t) =
.5A/(A + t), where A is a parameter that depends on the number of train-
ing steps and the magnitude of final correction. The learning rate is based on
experience, and it is not needed if the following batch-training algorithm is used.

The Batch-LVQ1. The LVQ1 algorithm can also be written shorter as

mi(t+ 1) = mi(t) + α(t)s(t)βci[x(t)−mi(t)] ,

where s(t) = +1 if x and mi belong to the same class,
but s(t) = −1 if x and mi belong to different classes,
and where βci = 1 for c = i, βci = 0 for c �= i.

Its equilibrium condition is written as

∀i,Et{sβci(x−m∗
i )} = 0 .

The LVQ1 algorithm, like the SOM, can now be written as the so-called
Batch-LVQ1 algorithm as described by the following steps:

1. For the initial model vectors take, for example, those values obtained
in an SOM process, where the classification of the x(t) is not yet taken
into account.

2. Input the x(t) again, this time listing the x(t) as well as their class
labels under each of the winner nodes.

3. Determine the labels of the nodes according to the majorities of the
class labels of the samples in these lists.

4. Multiply in each partial list all of the x(t) by the corresponding factors
s(t) that indicate whether x(t) andmi(t) belong to the same class or not.

5. At each node i, take, concurrently for the new value of the model
vector the entity

m∗
i =

∑
t′ s(t

′)x(t′)/
∑

t′ s(t
′) ,

where the summation is taken over the indices t′ of those samples that
were listed under node i.

6. Repeat from 2 a suitable number of times.
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Comment 1. For stability reasons it may be necessary to check the sign of∑
t′ s(t

′). If it becomes negative, no updating of this node is made.

Comment 2. Unlike in the usual LVQ1, the labeling of the nodes is allowed
to change during the iterations. This has sometimes yielded slightly better clas-
sification accuracies than if the labels of the nodes had been fixed at the first
steps. Alternatively, the labeling can be determined permanently immediately
after the SOM initialization process.

The LVQ1 script. A simple MATLAB script for the computation of LVQ1
is shown below. Although it executes 10000 learning steps, it only takes some 10
seconds on a PC to do it.

The script starts with the definition of 10000 training vectors X and their
classification (with class symbols 1 and −1, respectively). Class S1 has the Gaus-
sian form with standard deviation equal to 1, and it is centered at the coordinates
(−2,−2). Class S2 has the standard deviation of 2 and is centered at (2, 2). Also
N ∗N SOM model vectors (N = 4) are declared.

The initialization of the models vectors of the LVQ1 is carried out by first
computing an SOM with N ∗N model vectors, whereupon the classification of
the X is not yet taken into account. In this way, the number of model vectors to
be assigned to each class in the LVQ1 is determined automatically, depending
o the forms of the class distributions, to guarantee roughly optimal spacings of
the model vectors near the decision border, as will be seen. The labeling of the
model vectors is made by a simple majority voting of the class symbols 1 and
−1 of the winners.

After that the LVQ1 algorithm is applied for 10000 steps. The learning rate
alpha is let to decrease with the training steps according to an almost hyperbolic
law, which has been found suitable experimentally.

The plotting of the model vectors of the LVQ1 and the location of the decision
border between the classes is computed by the function named the voronoi (cf.
Voronoi tessellation [93]). This tessellation defines the borders of those input
regions such that all inputs that are falling to a particular region are mapped
to the same winner node; in other words, all these inputs are closest to this
node. The Voronoi tessellation automatically defines the class decision border,
too, because it partly coincides with the tessellation. The decision border has
been drawn with a thick black line to Fig. 49.

N = 4;

X = zeros(10000,2);

R = zeros(N*N,1);

S = zeros(10000,1);

for i = 1:10000

% Definition of training vectors and their classes

if rand <.5

S(i) = 1;
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Fig. 49. The model vectors of class S1 are drawn by large black balls and the model
vectors of class S2 by the smaller dots, respectively. The centroids of the class distri-
butions are located at (-2,-2) and (2,2), respectively. The Voronoi tessellation defined
by the LVQ1 model vectors is shown as a network of thin lines; the decision border
between the classes, which partly coincides with the tessellation, is drawn by a thick
black broken line. The centroids of the class distributions are located at (-2,-2) and
(2,2), respectively. This example resembles the case shown in Fig. 48(b), except that
the numbers of model vectors distributed between the classes (6 vs. 10) are determined
automatically, in the initialization by the SOM. Notice how the model vectors of the
different classes are automatically withdrawn from the region where the class density
functions overlap. Especially the distribution of the model vectors of class S2 is no
longer spherically symmetric.

X(i,:) = randn(1,2) -2;

else

S(i) = - 1; %

X(i,:) = 2*randn(1,2) + 2;

end

end

% SOM

smI = som_lininit(X,’msize’,[N N],’lattice’,...

’hexa’,’shape’,’sheet’);

smC = som_batchtrain(smI,X,’radius’,[1 .01],...

’trainlen’,50);

sm = som_batchtrain(smC,X,’radius’,[.01 .01],...

’trainlen’,200);
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M = sm.codebook;

norms2 = sum(M.*M,2);

% Calibration of SOM

for u = 1:10000

for v = 1:N*N

X1 = X(u,:)’;

Y = norms2 - 2*M*X1;

c = min(Y);

R(c) = R(c) + S(u); % class labels of the model vectors computed

end

end

R = sign(R); % simple majority voting of the class symbols -1 and +1

% LVQ1

for u = 1:10000

alpha = .01/(1 + u/10) + .00005;

% Determination of winners

for v = 1:N*N

X1 = X(u,:)’;

Y = norms2 - 2*M*X1;

c = min(Y);

% Updating

sigma = S(u)*R(c);

M(c,:) = M(c,:) + alpha*sigma*(X(u,:) - M(c,:));

end

end

% Voronoi tessellation

voronoi(M(:,1),M(:,2))

The Batch-LVQ script. The following script for the Batch-LVQ1 must
be constructed a bit differently; nonetheless its relation to the LVQ1 script is
obvious. The most salient difference is that no learning-rate parameter is needed.

N = 4;

X = zeros(10000,2);

R = zeros(N*N,1);

S = zeros(10000,1);

for i = 1:10000

if rand <.5

S(i) = 1;

X(i,:) = randn(1,2) - 2;

else
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S(i) = - 1;

X(i,:) = 2*randn(1,2) + 2;

end

end

% SOM

smI = som_lininit(X,’msize’,[N N],’lattice’,...

’hexa’,’shape’,’sheet’);

smC = som_batchtrain(smI,X,’radius’,[1 .01],...

’trainlen’,50);

sm = som_batchtrain(smC,X,’radius’,[.01 .01],...

’trainlen’,200);

M = sm.codebook;

norms2 = sum(M.*M,2);

% Calibration of the SOM

for u = 1:10000

for v = 1:N*N

X1 = X(u,:)’;

Y = norms2 - 2*M*X1;

c = min(Y);

R(c) = R(c) + S(u);

end

end

R = sign(R);

sX = zeros(N*N,2);

sS = zeros(N*N,1);

In the Batch-LVQ1 we use the same 10000 training vectors as in the LVQ1,
but we divide them into 100 batches, with 100 input vectors in each. This time
the batches are not identical as usual, but they have the same statistics. Nonethe-
less we do not expect that the algorithm would terminate exactly, since the
batches are not identical. Anyway the batch computation assigns to each in-
put vector in the batches the same weight, since there are no learning rates in
this algorithm. This may cause some differences in the learning results, when
compared with the LVQ1.

% Batch-LVQ1

for cycle = 1:100

for u = 1:100

% Determination of winner

for v = 1:N*N

X1 = X(100*(cycle-1)+u,:)’;

Y = norms2 - 2*M*X1;

c = min(Y);
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sigma = S(100*(cycle-1)+u)*R(c);

sX(c,:) = sX(c,:) + sigma*X(100*(cycle-1)+u,:);

sS(c) = sS(c) + sigma;

end

end

for v = 1:N*N

if sS(v) > 0

for el = 1:2

M(v,el) = sX(v,el)/sS(v);

end

end

end

end

voronoi(M(:,1),M(:,2))

The plot of the Batch-LVQ1 computation is shown in Fig. 50. The decision
border looks similar as in LVQ1; there may be some deviations in the detailed
locations of the model vectors.

30.2 The Learning Vector Quantization algorithm LVQ3

Actually there exists an LVQ2 algorithm, too, but since it is less robust than
LVQ1 and LVQ3, it is skipped here.

In the LVQ3 algorithm we try to ensure that the model vectors mi keep on
approximating the class distributions even in very long training sequences; this
has been a problem in LVQ1. We solve it by adding a third recursion to the
algorithm:

mi(t+ 1) = mi(t) + α(t)[x(t)−mi(t)] ,
mj(t+ 1) = mj(t) + α(t)[x(t)−mj(t)] ,

where mi and mj are the two closest model vectors to x, whereupon
x and mj belong to the same class, while x and mi belong to different
classes, respectively. Furthermore,

mk(t+ 1) = mk(t) + εα(t)[x(t)−mk(t)] ,

for k ∈ {i, j}, and x, mi and mj belonging to the same class.

In a series of experiments, applicable values of ε between .1 and .5 were found.

Although we do not show any simulation results from the LVQ3, it may
anyway be interesting to see how the script has been changed from that of
LVQ1:
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Fig. 50. This picture represents the model vectors of Batch-LVQ1. There are no big
differences in the decision border (thick black line) when compared with the stepwise
recursive LVQ1. The exact locations of the individual model vectors, however, may
look somewhat different when compared with the LVQ1, but these locations are al-
ready different in various runs of both algorithms. Such differences are mainly due to
the randomness of the training steps, and they do not affect the classification accu-
racy essentially: it is only the relative location of the pairs of model vectors in both
classes that lie closest to the decision border, and that is controlled closely by both
algorithms. Only the model vectors that are closest to the border define the location
of the classification border and thus the classification accuracy. The differences in the
model vectors are also due to different kinds of training steps in the two algorithms,
because no time-variable learning rate is included in the Batch-LVQ1 algorithm.

N = 4;

X = zeros(10000,2);

S = zeros(10000,1);

R = zeros(N*N,1);

for i = 1:10000

if rand <.5

S(i) = 1;

X(i,:) = randn(1,2) -2;

else

S(i) = - 1; %

X(i,:) = 2*randn(1,2) + 2;

end

end

% SOM

smI = som_lininit(X,’msize’,[N N],’lattice’,...

’hexa’,’shape’,’sheet’);

smC = som_batchtrain(smI,X,’radius’,[1 .01],...
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’trainlen’,30);

sm = som_batchtrain(smC,X,’radius’,[.01 .01],...

’trainlen’,200);

M = sm.codebook;

norms2 = sum(M.*M,2);

% Calibration of SOM

for u = 1:10000

for v = 1:N*N

X1 = X(u,:)’;

Y = norms2 - 2*M*X1;

c = min(Y);

R(c) = R(c) + S(u);

end

end

R = sign(R);

Now we must use the sort instruction instead of min:

% LVQ3

for u = 1:10000

alpha = .01/(1 + u/10) + .00005;

% Determination of winners

for v = 1:N*N

X1 = X(u,:)’;

Y = norms2 - 2*M*X1;

[C,c] = sort(Y);

% Updating

cond = (S(u)==1 && R(c(1))==1 && R(c(1))==1||...

S(u)== -1 && R(c(2))== -1 && R(c(2))== -1);

e = .3;

M(c(1),:) = M(c(1),:) + alpha*S(u)*R(c(1))*(X(u,:) - ...

M(c(1),:));

M(c(2),:) = M(c(2),:) + alpha*S(u)*R(c(2))*(X(u,:) - ...

M(c(2),:));

M(c(1),:) = M(c(1),:) + e*alpha*cond*(X(u,:) - M(c(1),:));

M(c(2),:) = M(c(2),:) + e*alpha*cond*(X(u,:) - M(c(2),:));

end

end

% Voronoi tessellation

voronoi(M(:,1),M(:,2))
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30.3 The ”LVQ-SOM”

It may be interesting to find out that an LVQ algorithm and the SOM algorithm
can be combined in a straightforward way. Consider the basic training algorithm
of the SOM:

mi(t+ 1) = mi(t) + hci(t)[x(t)−mi(t)] .

The following supervised training scheme can be used if every training sample
x(t) is known to belong to a particular class, and the mi(t) have been assigned
to respective classes, too. Like in the LVQ, if x(t) and mi(t) belong to the same
class, then in the ”LVQ-SOM” x(t) is selected positive. On the other hand, if
x(t) and mi(t) belong to different classes, then the sign of hci(t) is reversed.
Notice that this sign-reversal rule is applied individually to every mi(t) in the
topographic neighborhood of the ”winner.”

It may be advisable to apply the ”LVQ-SOM” scheme only after the unsu-
pervised SOM phases, after the neighborhood has shrunk to its final value.

The script of the LVQ-SOM is left for an exercise to an advanced SOM pro-
grammer.

Difference between the ”Supervised SOM” and the ”LVQ-SOM”.
In the Supervised SOM discussed in Sec. 30 we concatenated the input vectors
and the associated class vectors (weighted unit vectors), and then carried out a
normal SOM training procedure. The class vectors increased the vectorial differ-
ence between the different classes, but no error corrections of the LVQ type were
performed. If we look at Fig. 47, we may think that the basic SOM algorithm is
directly trying to approximate the segments of class distributions, separated by
the Bayesian borders. The mapping is still topographic, because the neighbor-
hood function is trying to organize the models vectors topographically.

In the LVQ-SOM we make use of the neighborhood functions, too, which
results in stronger training than in LVQ, because many model vectors are then
updated in one training step, which increases their local correlation and sta-
tistical accuracy. On the other hand, the class information is not given in the
data vectors but in the training algorithm. Although the LVQ-SOM seems more
complex than the Supervised SOM, it is also more effective, and because it is
trying to approximate the Bayes borders directly, its accuracy is better and the-
oretically justified. (We introduced the Supervised SOM mainly for historical
reasons and also because it is easy to use.)
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31 Optimization of a feature detector bank

Waveform analysis by LPC filters

Objective:

Especially in electro-acoustics, but also in other signals analyses, the wave-
form analysis is often based on Linear predictor coding (LPC) coefficients. The
LPC coefficients are light to compute, and there is a special function lpc for it
in MATLAB. Their efficacy, e.g., in speech coding and recognition is compara-
ble with frequency analysis by the Fast Fourier Transform. In this section we
shall discuss the optimization of an LPC filter bank by the SOM, eventually
fine-tuned by LVQ.

Linear predictor coding (LPC) coefficients. Consider a sequence of
scalar samples x(t) that may represent, e.g., a waveform. Let t here stand for
a sampling instant, an integer. We shall look for a linear approximation, called
the nth order autoregressive (AR) process, which approximates the value x(t)
recursively as

x(t) = - a(2)*x(t-1) - a(3)*x(t-2) - ... - a(n+1)*x(t-n) .

Note that in this particular writing, which is used in the MATLAB, there
are n terms on the right, but there are n + 1 coefficients: the value of the first
coefficient a(1) is always equal to 1, and the numbering of the coefficients on the
right-hand side starts with 2. Notice also the minus signs on the right-hand side.

The coefficients a are called the linear predictor coding (LPC) coefficients.
For their computation there is a special function

a = lpc(x,n)

in the MATLAB, where a is the vector of the coefficients a. An nth order
process always produces n+ 1 coefficients, namely,

a(1), a(2), ..., a(n+ 1), where always a(1) = 1.

When the waveform is produced by a physical system, such as the speech
organs, the linear approximation is usually very good, provided that n is large
enough (in speech analysis and synthesis, on the order of 20). The AR process
has been used widely in signals analysis and especially in the digital analysis
and synthesis of speech.

Since the LPC filter is linear, its coefficients can be computed easily for any
given time-domain signal by minimizing the variance of the prediction errors. In
MATLAB this can be made conveniently by the Levinson-Durbin recursion [29]
[4].
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An example of the performance of the LPC predictor is given in Fig. 51.
One of the classic waveforms is the relaxation of a second-order linear dynamic
system:

x(t) = e−Atcos(Bt) .

The original waveform x(t) has been defined for 30 steps of t, as shown in
the top figure. However, only the steps 1 ... 15 have been taken into account in
computing the LPC coefficients.

The sixth-order LPC coefficients are shown by the bar diagram in the central
figure. Note that a(4) and a(5) are not visible, and a(6) and a(7) are very faint.

The 16 first samples of the waveform y(t) in the bottom figure are copies
of the waveform at the top. The rest of the bottom curve has been computed
recursively: after the estimate of y(16) has been computed, the estimate of y(17)
is computed on the basis of y(2), y(3), ..., y(16), and so on. In the bottom figure,
the waveform y(t) is equal to that of x(t) up to step 15, and steps 16 ... 30
represent the values y computed recursively on the basis of the LPC coefficients.
All of the images in Fig. 51 have been produced by the following script:

len= 30;

x = zeros(1,len);

y = zeros(1,len);

A = .057;

B = .99;

for t = 1:len

x(t) = exp(-A*t)*cos(B*t);

end

a = lpc(x,6);

for t = 1:15

y(t)= x(t);

end

for t = 16:len

y(t) = -a(2)*y(t-1) - a(3)*y(t-2) - a(4)*y(t-3)...

- a(5)*y(t-4) - a(6)*y(t-5) - a(7)*y(t-6);

end

for pic = 1:3

subplot(3,1,pic);

if pic == 1

plot(x(1,:));

else if pic == 2

bar(a(1,:));

else

plot(y(1,:));

end

end

end
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Fig. 51. Prediction of a waveform on the basis of the LPC coefficients. Top figure: x(t).
Middle figure: The LPC coefficients a(k), which were computed from the waveform
x(t) from the interval [1, 15]. They are represented by a bar diagram. Note that in
the MATLAB convention, the first coefficient is always equal to 1. Bottom figure: The
waveform of y(t). Up to step t = 15, y(t) is a copy of x(t), but after that (t = 16...30)
the waveform has been predicted by the LPC coefficients.

31.1 The LPC-SOM

Now we are constructing an SOM for 25 sets of LPC coefficients. That is, the
SOM operates like a competitive filter bank where the winner classifies the wave-
form.

For that purpose the SOM units should be labeled, for instance, by the sym-
bols of phonemes that the segment of the speech waveform represents. When the
unknown waveform selects the winner, it becomes classified at the same time.

In this tutorial example we do not deal with phonemes but with artificial
waveforms, for the occurring variations of which we want to compute the repre-
sentative SOM.

Training data. The coding starts with the definition of the training data.
We shall pick up an example, in which the distribution of the input signal pat-
terns is very simple, e.g., the signals are defined by only two parameters, like
the frequency and the attenuation of the waveform of Fig. 51. (This is only an
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illustrative example for programming, of course; the natural signals are much
more multidimensional, but they may be described by a small number of LPC
coefficients.)

When this waveform is restricted to, say, to the interval [1, 15] , we call
this discrete-time temporal pattern an episode. One thousand of such episodes
are generated by randomly selecting the parameters A and B as A = .05 +

.1*rand; B = .3 + 2*rand; for the 1000 episodes we compute the LPC coef-
ficients and use them as input data patterns for the SOM algorithm. Here we
denote the input data used to train the SOM by b.

b = zeros(1000,7);

len= 30;

x = zeros(1,len);

y = zeros(1,len);

for epis = 1:1000

A = .05 + .1*rand;

B = .3 + 2*rand;

for t = 1:len

x(t) = exp(-A*t)*cos(B*t);

end

a = lpc(x,6);

b(epis,:) = a(1,:);

end

smI = som_lininit(b,’msize’, [5 5], ’lattice’, ...

’hexa’, ’shape’,’sheet’);

smC = som_batchtrain(smI, b, ’radius’, [2 .5], ...

’trainlen’, 30,’neigh’, ’gaussian’);

sm = som_batchtrain(smC, b, ’radius’, [.5 .5], ...

’trainlen’, 30,’neigh’, ’gaussian’);

M = sm.codebook;

for pic = 1:25

subplot(5,5,pic)

bar(M(pic,:));

end

Fig. 52 is a different type of an SOM picture that represents the LPC coeffi-
cients at the various SOM locations as bar diagrams produced by the MATLAB
graphics.

The central motive in producing an LPC-SOM is that one is then able to
classify input signals. Since the set of filters in the LPC-SOM is optimized for
the statistics of waveforms used in the formation of the SOM, the computing
resources are optimized for that task. Naturally the same kind of optimization
would have been achieved by a filter bank based on the classical k-means clus-
tering, too, but the SOM has two advantages over it: first, its training is more
robust due to the local smoothing effects in the neighborhoods, and second, it is
easy and quick to monitor the performance by the SOM display; we have plenty
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of experience of this from our ”Phonetic Typewriter” [36]. Further, supervised
tuning of the LPC filters is possible, as will be mentioned below.

Fig. 52. 25 subplots, together representing the seven LPC coefficients in the various
SOM locations. Note that in the MATLAB convention, the first coefficient is always
equal to 1.

Actually Fig. 52 however, is not what was originally meant. In a genuine
Predictor SOM [50], the winners were supposed to be defined by the smallest
estimation errors when comparing the time-domain input waveform with the
waveforms produced by the LPC filters at each node of the SOM. At least in
the present example, the problem seemed to be that when the training of the
SOM models was based on the minimization of the estimation errors based on
the stochastic-gradient method, like suggested in [50], the self-organizing power
remained rather weak and did not easily produce well-ordered maps. Perhaps
a longer waveform to find the statistically best matches in training might have
been needed. Then the derivation of the gradient-descend formula would have
become rather complicated.

In Fig. 53 we give the original results from [50], in order to show what kinds
of LPC filters are formed for real speech waveforms.
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Fig. 53. The 16th-order LPC-coefficient vectors have been organized in this SOM. (a)
The ordinate values of the plots drawn at each node of the map represent the LPC
coefficients : ai,1 on the left, ai,16 on the right. (b) Frequency responses computed
from the LPC coefficients are shown as a plot in each map position: low frequencies
(300 Hz) on the left, high frequencies (8 kHz) on the right. (c) Labeling of the nodes
by some phonemic symbols. The capital letters correspond to the Finnish phonemes,
which sound almost similar as in Latin. (From [50].)

31.2 Supervised tuning of the LPC-SOM

If the purpose is to create an LPC-coefficient filter bank for pattern recognition
or classification, I may suggest that the final class separation were improved by
supervised training, for instance by the Supervised SOM like in [36], or by LVQ-
SOM. To that end, we must have available a sufficient number of samples from
waveforms that are known to belong to a finite number of classes, such as speech
waveforms having been extracted from utterances of known phonemes.
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32 How to make large SOMs

Some time ago I asked a group why they had started with
one of the largest and most difficult SOM problems, without
having experience from simpler ones. They answered: ”But
Professor Kohonen, don’t you know that there is nowadays a
hard competition in the world?”

Objective:

Sooner or later you might want to make really big SOMs. The SOM
Toolbox functions have a limited memory space, and it is neither quite
sure that the MATLAB is then the right programming system. Maybe it is
advisable to program the problem, e.g., in C++, Java, or R. Nonetheless,
before you start programming large problems, it is necessary to have an
idea of what to program. One can increase the dimensions of the problem
with simple tricks, and one can change the representation format. Here
are some pieces of advice.

Whatever you intend to do in developing the SOM, it is necessary to imagine
what the algorithms are doing. This you will learn best with simple toy problems.
For this reason I have started with very simple examples and then increased the
complexity of tasks gradually and progressively. It is highly recommendable that
you run the simpler exemplary scripts first, unless you already have a lot of ex-
perience from the SOMs. The really large applications could not be described
here; it is necessary to refer to the original scientific publications.

Multiplying the number of nodes in the SOM. The simplest method
for to save computing time in constructing large SOMs is to compute first a
smaller SOM array, and then to multiply its size. The small array is first let to
converge, and then new, interstitial nodes are introduced between the old ones.
In this way the size of the SOM is made roughly fourfold: cf. how this trick
was applied in Subsec. 29.8. Since the converged model vectors are supposed
to change smoothly, for the initial values of the interstitial models we can take
averages of the neighboring old nodes. Then this larger SOM is already rather
well initialized and the time for its convergence in the subsequent training phases
becomes shorter. This enlargement of the SOM can be continued an arbitrary
number of times, if after each multiplication the enlarged SOM is let to converge
carefully. We have used this method in constructing the largest SOM known so
far: the SOM of about 7 million patent abstracts, which were mapped onto an
approximately one-million-node SOM.

Selection of the neighborhood function. The Gaussian neighborhood
function yields better SOMs than the bubble form, or neighborhood set, be-



183

cause one can use a continuous range of values for the radius of the neighbor-
hood. For very large maps the fact that the Gaussian function extends to the
borders of the map makes the updating computations slow. A compromise is the
cutgauss form of the neighborhood, or the Gausssian kernel whose flanks are
cut at the radius corresponding to the standard deviation. The amount of com-
putation is of the same order of magnitude as with the bubble neighborhood
function, while the radius can be set at an arbitrary (real) value, e.g., smaller
than unity.

Shortcut winner search. An effective method to reduce the number of
winner-search operations is to estimate the winner location on the basis of pre-
vious searches. A prerequisite for this is that the batch of training vectors is the
same at each iteration cycle.

Assume that we are somewhere in the middle of an iterative training pro-
cess, whereupon the last winner corresponding to the training vector has been
determined at an earlier training cycle. If the training vectors are expressed as
a linear table, an address pointer to the tentative (earlier) winner location can
be stored (and updated) with each training vector (cf. Fig. 54).

Fig. 54. Finding the new winner in the vicinity of the old one, whereupon the old
winner is directly located by a pointer associated with the training vector. After the
new winner is found, the old pointer is updated.

Assume further that the SOM is already smoothly ordered, although not yet
asymptotically stable. This is the situation, e.g., during the fine-tuning phase,
which may be long in large maps. However, the size of the neighborhood is
constant and small. Then the new winner is found at or in the vicinity of the
old one, and in searching for the new winner, it will suffice to carry out a local
search in the neighborhood of the node located by the pointer. It may suffice to
find a new winner whose matching with the training vector is better than for
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the old winner. This will be significantly faster than performing an exhaustive
global search over the whole SOM.

The search can first be made in the immediate surround of the old winner,
and if the best match is found at its edge, searching is continued in the larger
surround, until the best match is in the inside of the searching domain. After
the new winner location has been identified, the associated pointer is is replaced
by th address of the new winner location.

In a benchmarking study we found that the speedup factor in winner search
due to the shortcut search could be on the order of a few dozen.

Speedup in sparse matrices. In the winner search, whether a dot-product
SOM or a usual SOM with the simplified winner search, the most time-consuming
task is to form the matrix-vector product M*X. There are cases, especially with
word histograms, where the input vectors X are sparse, i.e., they contain plenty
of zero elements. In the matching for the winner these zeros can be skipped. It is
possible to tabulate the indices of the non-zero components of each input vector
and use only those components in computing the matches.

Saving memory by reducing representation accuracy. In very large
SOMs with high input dimensionality, the memory requirements can be reduced
significantly by using a coarse numerical accuracy of the vectors and matrices,
whereby even a very large SOM can be kept in the main memory of the com-
puter system. Notice that since the models are rather regularly spaced in the
data space, the numerical accuracy for the location of the winner can be in-
credibly low. For instance, in our largest SOM we had only 8 -bit accuracy in
the representation of the vector and matrix components. If the dimensionality
of the data vectors is large, the statistical accuracy with such quantized-value
components may be quite sufficient in in the matching.

For further details of possible speedup and memory saving, cf. [39].
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